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ABSTRACT
For waves generated by a wave source which is simultane-

ously moving and oscillating at a constant frequency ω , a res-
onance is well known to occur at a particular value τres of the
nondimensional frequency τ = ωV/g (V : source velocity rela-
tive to the surface, g: gravitational acceleration). For quiescent,
deep water, it is well known that τres =

1
4 . We study the effec-

t on τres from the presence of a shear flow in a layer near the
surface, such as may be generated by wind or tidal currents. As-
suming the vorticity is constant within the shear layer, we find
that the effects on the resonant frequency can be significant even
for sources corresponding to moderate shear and relatively long
waves, while for stronger shear and shorter waves the effect is
stronger. Even for a situation where the resonant waves have
wavelengths about 20 times the width of the shear layer, the res-
onance frequency can change by ∼ 25% for even a moderately
strong shear V S/g = 0.3 (S: vorticity in surface shear layer).
Intuition for the problem is built by first considering two simpler
geometries: uniform current with finite depth, and Couette flow
of finite depth.

INTRODUCTION
We consider the classical problem of water waves generated

by a wave-maker which advances at constant speed relative to
the water surface, and is simultaneously oscillating at a constant
frequency. A large body of literature has studied this topic going
back more than half a century [1, 2]. The problem is closely re-
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lated to the problem of seakeeping in regular waves, a problem
that challenges researchers and engineers to this day. It is a com-
mon assumption that the response of a floating body to a general
seastate can be approximated as the sum of responses to regular
waves components of the wave spectrum [3].

The well-known phenomenon sometimes named Doppler
resonance occurs in deep still water at the particular value of the
non-dimensional frequency-velocity: τ = ωV/g = 1

4 . Here ω is
the oscillation frequency, V the forward velocity, and g the grav-
itational acceleration. At resonance the forward-directed group
velocity exactly equals V , and wave energy is unable to escape
the vicinity of the wave-source, see e.g. [4,5]. When τ < 1

4 wave
solutions exist in front of as well as behind the moving source
whereas for τ > 1

4 all waves are left behind by the ship. In a
linear theory the Doppler resonance can result in infinite wave
amplitudes, depending on the nature of the wave source. When
the wave source is modelled as a moving, localised surface pres-
sure, wave amplitudes diverge as (τ − 1

4 )
−1/2 in 2D, and like

ln(τ− 1
4 ) in 3D [6], but become finite once nonlinear wave com-

ponents are included [7]. Also when the waves are created by a
moving point-source of oscillating strength (a Green function in
the theory of floating bodies), infinite wave amplitudes result in
linear theory, but are rendered finite once such sources are used
to create a body of nonzero volume [8,9]. Particularly in numer-
ical schemes the Doppler resonance requires particular care, and
moreover, wave resistance can increase sharply near the critical
frequency under some circumstances [10, 11].

Two of us recently showed how the presence of a sub-surface
shear current can greatly enrich the complexity of the Dopper
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resonance question [12]. The simplest shear current was con-
sidered, depending linearly on depth as U(z) = Sz, S being the
constant vorticity of the flow. Not only will the presence of even
relatively weak shear significantly increase or decrease the res-
onant value of τ depending on the direction of motion relative
to the current; for strong shear Frs >

1
3 several resonant values

— as many as 4 – is possible. Frs is the “shear-Froude number”
Frs =V S/g. Variations of the resonant value τres was previously
considered in 2D [13], in agreement with [12] as a special case.

Real-life shear currents in the coastal zone typically possess
velocity profiles differing strongly from the simplest, linear for-
m. Typical examples of shear flows that can strongly influence
dispersion include wind-driven surface flows or tidal flows [14],
where shear is concentrated near the surface. Useful though it
is for allowing transparent analytical results, the ability of the
simplest, strictly linear shear flow to make accurate predictions
of the resonant frequency is restricted to relatively short wave-
lengths in the sense of [15]. Surface waves are affected by flow
conditions within about half a wavelength’s depth of the surface,
hence sufficiently short waves will “see” an approximately lin-
early varying current, whereas longer waves are affected by the
full velocity profile U(z).

An oft-used model in such situations is to let U(z) be a piece-
wise linear function of depth (e.g. [16]) so that vorticity S has one
constant value S1 for 0 > z > −h1, and S2 for −h1 > z > −h2,
with h = h1 + h2 the total depth. Hence two depth scales, h1
and h, are involved. The model is a simple case of the so-called
N-layer model [17, 18].

We concentrate herein on the dependence of the resonance
frequency τres in a 2D setting . Our considerations are indepen-
dent of what the source of the waves may be. Three special cases
are analysed; finite water depth in the absence of shear, uniform
vorticity over finite water depth, and the case where shear occurs
only in a thin surface layer in otherwise deep water.

SYSTEM DESCRIPTION AND FORMALISM
Linear gravity surface waves generated by a moving, oscil-

lating surface disturbance are considered in two dimensions atop
a background shear flow. The fluid is assumed to be incompress-
ible, of negligible viscosity and surface tension, and whose free
surface is at z= ζ (x) where z= 0 denotes the undisturbed surface
. Vertical coordinates z1 and z2 are defined within each layer such
that the horizontal flow velocity in the upper layer can be written
U1(z1) = S1z1 and in the bottom layer as U2(z2) = S2z2− S1h1.
The geometry is shown in Fig. 1.

We assume that the surface disturbance oscillates at a single
frequency ω and simultaneously advances at constant velocity
V along the x direction. We choose a moving coordinate sys-
tem with horizontal coordinate ξ = x−Vt, where t is the time.
The disturbance is assumed to generate waves also oscillating
at frequency ω in the moving reference frame. Though wave
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FIGURE 1. Geometry of the wave-current system: two layers of a
linear shear current oriented along the x-direction are present, including
the upper layer U1(z1) = S1z1 and the lower layer U2(z2) = S2z2−S1h1,
vertical coordinates z1, z2 are defined within each layer; depths for the
upper and lower layers are respectively h1 and h2.

amplitudes at a Doppler resonance can be quite large, we study
only the onset of this resonance by considering the propagation
of waves of infinitesimal amplitude. In this regime the wave-
current interaction is unidirectional: waves are affected by the
background flow but the opposite interaction is neglected. For
the 2D geometry considered herein the wave disturbance is irro-
tational permitting the use of a velocity potential, yet we work
with the fluid velocities (û, ŵ) to readily allow extension to the
generalized case where the motion of the disturbance is not par-
allel to the flow and the waves are rotational [19]. We choose to
work in Fourier space of the horizontal axis, such that the phys-
ical perturbation quantities resulting from the oscillating distur-
bance can be written

[û(z), ŵ(z), p̂(z),ζ ] =
∞∫
−∞

dk
2π

ei(kξ−ωt)[u(z),w(z), p(z),B] (1)

where k is the wave number, and p̂ the dynamic pressure from
the wave such that the total pressure P = p̂−ρgz with fluid den-
sity ρ and gravitational acceleration g. Inserting Eq. (1) into the
Euler and continuity equations leads to expressions for the verti-
cal velocity and pressure within layer j = 1,2:

k−1w j(z j) = A j(k)sinhk(z j +h j)+C j(k)coshk(z j +h j), (2)

k2 p j(z j)/ρ = i[kV − kU j(z j)+ω]w′j(z j)+ ikS jw j(z j), (3)

where A j, and C j are unknown constants determined by bound-
ary conditions at the layer interface, bottom and free surface.

Shear-assisted vs shear-inhibited propagation
For the geometry of Fig. 1, the much-used terminology “up-

stream” and “downstream” propagation is not well suited, since it

2 Copyright © 2017 ASME



depends on the reference system, for which there are at least two
obvious options: either the surface velocity is chosen to zero, or
the velocity bottom is zero. “Upstream” and “downstream” swap
meanings depending on this choice. Defining vorticity as either
positive or negative is another convention used in the literature,
but this is less useful once the theory is extended to 3D. Instead
we compare our system to that in which the flow is constant with
depth, with the same surface velocity. Assuming a wave prop-
agates along the positive x axis, any monotonous U(z) can be
said to assist the wave if U ′(z)≤ 0 and to inhibit it if U ′(z)≥ 0,
relative to the constant U reference mentioned. Quantitaive-
ly, in the shear-assisted case the phase and group velocities are
increased by the prescence of shear, and are decreased in the
shear-inhibited case. The reader is referred to [20] for more de-
tail on the effect of shear on the phase and group velocities.

Dispersion relation
Applying the boundary condition at the seabed gives C2 =

0. At the layer interface w(z) and p(z) are continuous. At the
surface the normal linearized conditions ŵ = ζ̇ and P(ζ ) = 0
apply, yielding

kA1 sinhkh1 + kC1 coshkh1 =−i(kV +ω)B, (4a)
i(kV +ω)(A1 coshkh1 +C1 sinhkh1)+

iS1(A1 sinhkh1 +C1 coshkh1)−gB = 0, (4b)
C1 = A2 sinhkh2, (4c)
(kV +ω + kS1h1)A1 +S1C1 =

(kV +ω + kS1h1)A2 coshkh2 +S2A2 sinhkh2. (4d)

If, as considered in [12], the disturbance is caused by an exter-
nal surface pressure, the dynamic boundary condition is inhomo-
geneous with the applied pressure on the right-hand side. The
eigenvalue problem given by the homogeneous linear system (4)
then gives ω(k) via the implicit dispersion relation

∆[ω(k),k] = 0, (5)

here ∆ denotes the determinant of the coefficient matrix for A1,
A2, C1, and B. In the present case it is not difficult to find ∆

explicitly, yielding a somewhat unwieldy expression. Since the
dispersion relation holds for all k, we must have d∆/dk = 0.

Doppler resonance
Physically, Doppler resonance occurs in the situations

where the wave group velocity appears to be zero in a reference
frame moving with the source, indicating that wave energy can-
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FIGURE 2. Nondimensional oscillating frequency τ in the absence
of shear (S1 = S2 = 0) with respect to different K = kh for Frh varying
from 0.25 to 0.7 as indicated beneath each graph.
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FIGURE 3. Resonance frequency τres with respect to Frh in the ab-
sence of a shear current.

not be radiated away, i.e.,

cR
g =

dω

dk
=− ∂∆(ω,k)/∂k

∂∆(ω,k)/∂ω
= 0. (6)

It is convenient to define a non-dimensionalized frequency
τ = ωV/g which is well-known to naval architects. Eqs. 5 and
6 then yield a resonant wave number k0 and frequency ω0 as
a function of velocity V , depth h, and background shear current
strengths S1 and S2. Hence, we have the resonant frequency
τres = ω0V/g, which is well-known to equal 1

4 when h = h1 +
h2 = ∞ and S1 = S2 = 0.
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LIMITING CASES AND RESULTS
Finite water depth in the absence of a shear current

When S1 = S2 = 0 one finds from a non-dimensionalized
dispersion relation (5)

τ(K) =−KFr2
h +Frh

√
K tanhK. (7)

where K = kh and Frh = V/
√

gh. The nondimensional group
velocity is now defined as CR

g = dτ/dK. The resonant value is
found as τres = τ(K0) where from (6) or dτ/dK = 0, K0 solves

2Frh
√

K0 tanhK0 = tanhK0 +K0 sec2 K0. (8)

We choose K0≥ 0 by convention. One readily verifies that τres→
1
4 when h→ ∞. This is the geometry considered in [21], where
no quantitative discussion of the dependence of τres on h is given.

Fig. 2 shows τ(K) and the resonance frequency τres as a
function of the wave number K at various Frh. The figure
shows how the Doppler resonance occurs at wavenumbers where
dτ/dK = 0 . It is straightforward from Fig.2 that, for a particular
Frh, the group velocity CR

g decreases from positive to negative as
the wavelength decreases from ∞. In addition, shallower depth
(larger Frh) tends to decrease CR

g for a particular K (wavelength)
, requiring a longer resonant wavelength (smaller K0) to satisfy
(8). The resonance frequency also decreases with increasing Frh,
as shown explicitly in Fig. 3. τres drops to zero at Frh = 1, which
corresponds to the critical situation where transverse waves from
a moving ship vanish in finite water depth. This is the simplest
manifestation of a more general conclusion drawn in [12] that
the Doppler resonance decreases to zero at the critical value of s-
hear Froude number; the critical velocity in the presence of finite
depth and shear was discussed in detail in Ref. [22].

Uniform vorticity over water depth
When one layer of a linear shear profile of uniform vorticity

S is considered, we obtain

τ(K) =−KFr2
h− 1

2 sgn(S)Frs tanhK

+
√

Fr2
hK tanhK +( 1

2 Frs tanhK)2, (9)

where Frs = V |S|/g. Again τres = τ(K0) where K0 is the pos-
itive root (if such exists) of the equation obtained by CR

g =
dτ(K)/dK = 0. By convention we choose K0 ≥ 0, i.e., a wave
moving in the positive x direction. The situation S > 0 is denoted
“shear inhibited”, and S < 0 we call “shear assisted”.

Figs. 4 and 5 show the resonance frequency τres in differ-
ent combinations of the parameters Frs and Frh, respectively in
the ’shear-inhibited’ and ’shear-assisted’ situations. Interplays of

the shear current and finite water depth are quite obvious in both
situations. For shear-inhibited propagation both stronger shear
and shallower depth will tend to decrease the group velocity,
hence Fig. 4 shows that τres decreases as either Frs or Frh in-
creases. In accordance with [22], we ascertain that τres = 0 when
Frh =

√
1−Frs if S> 0, corresponding to the criterion for critical

velocity of ship waves (ω = 0). Conversely, stronger shear tend-
s to increase τres for shear assisted propagation, S < 0, shown
in Fig. 5 where increasing shear strength tends to increase the
group velocity.

Effects of surface vorticity

We now consider a two-layer fluid as depicted in Fig. 1 with
constant vorticity S1 in the upper layer and zero vorticity in the
bottom layer (S2 = 0). We assume the thickness h2 of the bot-
tom layer to be infinite for all practical purposes, such that fi-
nite depth effects are omitted. The piecewise constant vorticity
flow defined here is approximately representative of more realis-
tic profiles such as those driven by wind and tidal currents, where
the vorticity is greatest near the surface and decays rapidly with
depth. Such flows can have very strong near-surface shear which
will significantly affect waves whose length is in the order of a
few times h1, or less.

Eqs. 4-6 can be solved to find the Doppler resonance fre-
quency τres as a function of slightly re-defined parameters K =
kh1, Frs1 = V |S1|/g and Frh1 = V/

√
gh1. Similar to the previ-

ous section we consider both the shear inhibited (S1 > 0) case in
Fig. 6 and shear assisted (S1 < 0) in Fig. 7. As there are no depth
effects, τres→ 1

4 as Frs1→ 0 independent of Frh1.

The trends as a function of shear strength are similar to
Figs. 4-5 with τres decreasing for the shear-inhibited case due
to weakened dispersion, while increasing for the shear-assisted
case due to the opposite effect.

The striking conclusion seen in Fig. 6 is that even very mod-
erate values of Frs1 change the value of τres quite significantly.
The effect is strongest for small values of Frh1, corresponding
to higher K0. These are short waves which only “see” the shear
layer, not the uniform flow below, and are well described by the
simplest, linear profile studied above. Going by the rule of thum-
b that a wave can “see” about half its wavelength into the deep,
the profile will appear linear to waves for which K0 & π .

Yet perhaps surprisingly, increasing Frh1 to 0.8, the rate of
change for increasing S is reduced only by about a factor 2. This
we find striking, since now K0� π (by almost a factor 10). The
wave “sees” the flow down to about 10 times the width of the
shear layer, and yet a relatively modest Frs1 = 0.3 reduces τres
by more than 25% for shear-inhibited propagation. The change
in τres with Frs1 for shear-assisted flow (Fig. 7) is similar, but
tending to increase rather than decrease τres.
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FIGURE 4. K0 (a) and resonance frequency τres (b) with respect to different combinations of Frs and Frh in the ’shear-inhibited’ (S > 0) situations:
(c) contour plot of τres.
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Conclusions

We have studied the Doppler resonances from an oscillating
and moving wave source in a 2D fluid with a free surface, con-
sidering the effects of finite depth and background shear currents.
We are particularly interested in the effect of a shear layer near
the surface of otherwise quiescent (or uniformly flowing) fluid,
typical of wind and tide driven currents.

The resonance occurs when the group velocity equals zero
in the reference frame of the moving source. In quiescent, deep
waters the resonance is well known to occur at τres ≡V ω/g = 1

4
(V : source speed relative to surface, ω: oscillation resonan-
t frequency). Intuition is built by considering first two simpler
cases: finite depth without shear, and finite depth with constant
shear (vorticity). Finite depth reduces the resonance frequency
due to weakened dispersion, up to a critical value Frh = 1 where
the resonance frequency is zero. A background shear current re-
sults in directionally dependent dispersive properties, where the
resonance frequency is decreased for the case of positive vortic-

ity (shear-inhibited waves) and increased in the opposite (shear-
assisted) case.

We finally consider a shear layer of thickness h1 near the
surface, assumed to have constant vorticity S1, while the fluid
beneath the layer is presumed to be deep and at rest. The situation
is governed by two Froude numbers: Frh1 = V/

√
gh1 and the

shear-Froude number Frs1 = V S1/g. We find that the effect of
the surface shear layer can be surprisingly high. Even for waves
of wavelength λ ∼ 20h1, the resonant frequency is reduced by
more than 25% for moderate shear Frs1 = 0.3. We conclude that
the Doppler resonanc e frequency for ships and vessels can differ
significantly from τres =

1
4 in the presence of surface currents

from wind and tides.
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