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Abstract: We present analysis of the effect of a sub-surface shear current with uniform 
vorticity on hydrodynamic surface waves, showing rich physics and striking results. Due to 
the non-zero vorticity of the shear flow, standard potential theory solutions are not applicable, 
and analysis of the wave field is a delicate problem which we tackle by a combination of 
analytical and computational means. We compute and analyze linearized surface wave 
solutions to two fundamental problems: initial value problems (ring waves from a localized 
disturbance) and ship waves. The pattern of ring waves from an initial disturbance is 
significantly affected by the current, most strikingly so gravity driven waves in deep waters. 
Next, ship wave patterns in different parameter regimes are presented with special emphasis 
on the transition from sub-critical to supercritical wakes, a transition governed by a subtle 
interplay of the effects of the shear current and finite water depth.  
 

1    INTRODUCTION 

Only very recently has research progress been made on wave-current problems in three 
dimensions, although a large literature exists on wave-current interactions in two dimensions 
(see [1]-[4] and references therein). A current other than a uniform one complicates the 
problem because potential theory, the standard tool in linear wave theory, is not an option 
once vorticity has been introduced in three dimensions. Of particular interest is the simplest 
model where the shear flow is assumed to have spatially constant vorticity (a Couette profile). 
Although not commonly encountered in practice, the uniform vorticity profile has the 
advantage of allowing analytical progress, being scale independent and facilitating physical 
transparency since the shear flow is characterized by a single parameter. The author in [5] and 
[6] successfully obtained a general solution of the classical Cauchy-Poisson problem as well 
as ship waves by solving linearized Euler and continuity equations. And in [7], an initial value 
problem with prescribed impulsive pressure is solved for this particular model as well, 
providing confirmation of the results in [6].  
 
Classically, we have two perspectives when analyzing wave patterns, either a transient one or 
a stationary one in which the observer follows the travelling wave, applicable for ship waves. 
In the present paper, we will analyze these two by a variation of external boundary and initial 
conditions. Through a combination of both analytical and computational approaches, we 
obtained the corresponding wave patterns. Compared to the various methods which directly 
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The different problems considered differ in their boundary and initial conditions. For the ring 
waves, we consider a localized initial pressure pulse acting on the free surface for a very short 
time (using a Dirac delta function) when the surface is at rest. Ship waves may be generated 
by summing up a continuous series of pressure impulses moving at constant velocity V; this 
procedure is an equivalent alternative to the procedure used in [5] assuming that the waves are 
stationary as seen from the ship [8]. Generally, for either situation, linearized boundary 
conditions at the free surface and seabed can be respectively written as 
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௭ୀି|ݓ ൌ 0  ,                                                                                 (4) 

in which ζ= ζ(x, y, t) is the surface elevation relative to the undisturbed surface, and ( , , )extp x y t   
is the external pressure disturbance, which we assume known. For ring waves, we assume that 
the external pressure is zero for t < 0 and imparts a short impulse on the free surface at t=0 
described by a Dirac delta function. Ship waves can be generated by a constant, moving 
pressure - ( , , )extp x y t , expressed so that    0ext extp p   , in which tξ x V= - , 0ξ x=  is the 

pressure distribution at t=0 and ࢞ ൌ ሺݔ, ሻݕ  is the position vector. Since our theory is 
linearized, a continuously moving pressure can be replaced by a continuous series of short 
impulses integrated over time from -∞ to t, and superposition thus allows the formation of 
ship waves by adding up a continuous train of ring waves.  

2.2   Solutions of the surface elevation 

We follow the same steps as in [5] and [7] and introduce a Fourier transform in the xy plane to 
all physical quantities, which are defined  
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in which wave vector k = (݇௫,݇௬) = (k cosθ, k sinθ). Applying the Fourier transform to Eq. 1-
2 and with the impermeability condition at the seabed, we obtain the general solutions 

ݓ ൌ ܣ݇ sinh ݇ሺݖ  ݄ሻ
ߩ/ ൌ െሺܣሶ  ݖሻcosh݇ሺܣܷݔ݇݅  ݄ሻ  ሺ݅ܵ݇ܣݔ/݇ሻ sinh ݇ሺݖ  ݄ሻ	

ൠ  ,                               (6) 

In which A(k, t) is spatially constant. Substituting Eq. 6 to boundary conditions at the free 
surface, we obtain 

,ሺܣ݇ ሻsinh݄݇ݐ ൌ ζ	෩ሶ 							
െܣሶcosh݄݇  ሺ݅ܵ݇௫ܣ/݇ሻ sinh ݄݇ െ ሚߞ݃ ൌ ߩ/௫௧

ቋ,        (7) 
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in which we define ܣ as ܣሺ, 0ሻ,  0   as ( ,0) k  , and we used the condition in which current 
velocity at free surface is zero (otherwise there will be one more term in the linearized 
kinematic equations).  
 
A Gaussian distribution is used to define the initial pressure impulse at t=0, which we express 
as 

 2/( , ) ( ) r a
Ip r t I t e    ,                                              (8) 

wherein a is the width of the pulse, and 
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Referring to [7], by applying Laplace transform to Eq. 6 and substituting the initial impulsive 
pressure distribution yield the surface displacement 
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in which 1Ω cos tanhsFr KH  , 2 2 2
1 2Ω Ω ( cos tanh ) tanhsFr KH K KH   , and the non-

dimensional quantities are defined in Table 1. In the table, there are three Froude numbers 
which are defined to examine effects of different parameters: vorticity, ship velocity and 
water depth.  
 

Table 1: Definition of the physical and non-dimensional quantities 

Physical quantities Non-dimensional quantities 

ζ ζ/a 

h H=h/a 

r ( x ) X=r/a  ( X=x/a ) 

ξ (ξ) R= ξ/a (R= ξ/a) 

(x,y) (X,Y) = (x/a, y/a) 

t ܶ ൌ  ݃/ඥܽ/ݐ

ω1,2 Ωଵ,ଶ ൌ ߱ଵ,ଶඥܽ/݃ 

k  ( k ) K=ak  ( K=ak ) 

S ݎܨ௦ ൌ ܵඥܽ/݃ 

V ݎܨ ൌ ܸ/ඥ݄݃; ݎܨ ൌ ܸ/ඥ݃ܽ 

I PI=ܫ/ሺܽߩඥܽ݃ሻ 

 
When simulating the ships or the moving source, we still use the Gaussian pressure impulse 
but with constant moving speed. Particularly, for different times, we have ring patterns 
outgoing from the moving source (or the ship), and the continuous ring patterns caused by the 
moving source will ultimately result in a ship wake as previously described and sketched in 
Fig. 2. This description of ship waves goes back to Lord Kelvin [9]. However, we will 
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00( )
t

tt dt 


   .                                                            (13) 

Here, we choose the integral range from െ∞ and impose the radiation condition by assuming 
that all of the physical quantities have increased slowly from zero at െ∞ to its present value. 
Correspondingly, all of the quantities will be multiplied by the factor ݁ఌ௧, in which ߝ is an 
infinitesimal positive number and makes sure that Eq. 13 converges. Ultimately, we will get 
the solution by solving the limit for ߝ approaching to 0ା. It should be noted that we first apply 
all of the quantities with the form multiplied by term ݁ఌ௧  back to the original governing 
equations, and then follow the whole procedures from Eq. 1-12, thereafter we substitute the 
new expressions to Eq. 13. This method yields a solution with a stationary phase [8] and we 
find 
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in which definitions of β and γ can be seen in Fig.3, which is a brief sketch regarding angles 
that we use in this paper. Eq. 10 and Eq. 14 are the general solutions with which we will use 
as the basic foundation of further numerical simulations.  

2.3 Subcritical and supercritical situations for ship waves 

We obtain ship waves in a stationary phase where transient waves make no contribution to the 
ship wake. Physically, stationary phase refers to a situation where component of the ship 
velocity in the direction of wave propagation equals the phase velocity, and can be expressed 
(see [8] and [10]) 

cos ( , )kV kc k     ,                                                                (15) 

in which  

     2 2 2, tanh cos tanh / 4 cos tanh / 2kc k gk kh S kh S kh              . 

For a sufficiently fast source a situation may arise when the maximum phase velocity in some 
directions of wave propagation is insufficient for the wave to keep up with the source. We 
find that these plane wave components, for which cos ( , )maxV c k    , make no contribution 
to the train of waves. A subcritical situation refers to the case when all propagation directions 
contribute to the far-field waves and the equation cos ( , )V c k     has a solution k (γ) for 
every γ. 

3    NUMERICAL SOLUTIONS AND SPECIAL CASES 

In the previous sections we presented analytical solutions for the particular model presented in 
this paper. Nevertheless, due to the complicated expressions of the general solution, observing 
the physical phenomena requires numerical investigation. Hence, numerical evaluation of the 
integrals in equations (10) and (14) is performed and results are presented below. Note that 
with these equations, the surface elevation at each point (and similarly, the velocity 
components in any given point below the surface, not performed here) is calculated 
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independently of all other points, meaning that parallelization is immediate by simply 
dividing the grid into segments.  

3.1   Ring waves 

Transient ring waves from an initial pressure impulse are shown in Fig. 4, for 3 different 
cases: (a) Frs =0, H=20 (deep water, no shear); (b) Frs=1, H=20 (deep water, moderate shear); 
(c) Frs=1, H=0.1 (shallow water, moderate shear).  According to this figure, a perfect ring 
pattern is shown when there is no shear and there is little effect of moderate shear to waves in 
shallow water. On the other hand, in deep water the influence of a moderately sheared current 
to the ring patterns is clear to see, resulting in asymmetric waves from a symmetric pressure 
input.  
   (a)  Without shear current: Frs=0, H=20 

   (b) Moderate shear current: Frs=1, H=20 
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 (c)  Moderate shear current: Frs=1, H=0.1 

Figure 4: Waves in different times with (a) Frs=0, H=20; (b) Frs=1, H=20; (c) Frs=1, H=0.1.  Contour scaling 
here and all figures below in Chpt. 3.1 is that areas where ζ(X,Y,T) /a >0.2 ζmax (X,Y,T=0.1)/a are white and 

ζ(X,Y,T) /a <-0.2 ζmax (X,Y,T=0.1)/a are black, with linear color gradient for amplitudes in between. 
 
We further compared the transient waves of shallow water and deep water with strong shear 
vorticity, Frs=4, see Fig. 5. It can be seen in Fig. 5 that waves of deep water with strong shear 
are no longer rings at all, and we can clearly observe effects of vorticity in shallow water in 
this figure. Clearly the effect of the shear current is much more pronounced in deep waters 
than in shallow waters. Similar phenomena can also be seen in [5] and [7].  
 
   (a) Shallow waters H=0.1 
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     (b) Deep waters H=20 

Figure 5: Waves of deep and shallow waters in different times with strong shear current: Frs=4.  
 

3.2   Ship wave patterns 

We now turn to ship waves with a shear current in infinite water depth (Fig. 6a) and without 
shear current in finite water depth (Fig. 6b). As is shown in Fig. 6, Kelvin wake angles (as 
defined in Ref. [6]) are no longer constant in finite waters even without shear current and 
reaches to peak for Frh=1 – this fact is well known and was reported by Havelock over a 
century ago [12]. A similar effect is caused by a shear current [6]; even in infinite waters, the 
Kelvin angle is non-constant but depends on the shear Froude number Frs even though the 
Froude number Fr is constant. When the source moves at supercritical velocity, the transverse 
waves directly behind the source vanish since they are too slow to keep up with the source. 
The wave patterns showed in Fig. 6b accord well with Ref. [10] which illustrates variation of 
Kelvin angles with Frh and a critical situation at Frh=1 where the Kelvin angle reaches to π/2.  
 
We furthermore illustrate the variation of ship wave patterns between subcritical and 
supercritical cases with shear current in waters of different depth. Fig. 7 shows this 
phenomenon, which presents ship wave patterns of different shear vorticities in both finite 
and infinite waters. In the figure, the shear is made gradually stronger, and a transition from 
subcritical to supercritical or vice versa is observed. Wave patterns are more complicated in a 
finite water than in an infinite water because of the nontrivial interplay between shear and 
finite depth. When the angle between ship motion and current changes, waves can experience 
a transition from subcritical to supercritical as well as from supercritical to subcritical in finite 
water cases, the former of which is showed with β=30o, and latter of which is with β=150o. 
However, a supercritical to subcritical transition due to increasing Frs will never occur for 
infinite waters. A more detailed explanation for this phenomenon is given in [8] (some 
preliminary conclusions are found in [10]) where a general criticality condition as a function 
of Frs, Frh and β is given.  
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    (a) Different shear currents in infinite waters with  β=90o 

   (b) Without shear current in different water depth 

Figure 6: Ship waves  with Fr=0.8. In this figure and all figures below in Chpt. 3.2, red dashed lines represent 
the Kelvin angles as defined in Ref. [6], axes are in units of Λ0=2πaFr2, and relif shading from light to dark has 
scaled by corresponding maximum amplitude of surface displacement, areas where ξ>0.4 ξmax are light and ξ<-
0.3 ξmax are dark, with linear gradient color for amplitude in between.  

 

4     CONCLUSIONS 

In the present paper, wave patterns were calculated for two fundamental problems in the 
presence of a shear current with constant vorticity — an initial value problem and a stationary 
phase problem caused by a moving object. We first derive analytical results which are 
subsequently subjected to numerical computations. For an initial problem of ring waves 
created by a short pressure impulse, we demonstrated how the shear affects surface waves 
more strongly in deep waters (compared to size of disturbance) than in shallow waters. In the 
former case the ring waves can be distorted to such an extent that they are no longer ring 
shaped at all. As for ship waves, we illustrated that transitions of the wave pattern both from a 
supercritical to subcritical and from a subcritical to supercritical can occur in finite waters 
when increasing the shear vorticity. Nevertheless, only subcritical to supercritical can happen 
in deep waters. Thus a subtle interplay of water depth and shear was likewise shown to affect 
the ship waves.  
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  Finite water depth with Frh
2=1.4 and  β=150o. Critical value at Frs ≈ 0.48.  (Supercritical to subcritical) 

  Infinite water depth: β=150o, Frh
2=0. Critical value at Frs ≈ 15.  (All panels subcritical) 

   Finite water depth with Frh
2=0.8 and  β=30o. Critical value at Frs ≈ 0.23.  (Subcritical to supercritical) 

   Infinite water depth: β=30o
. . Critical value at Frs ≈ 1.07.  (Subcritical to supercritical) 

Figure 7: Ship wave patterns varying from supercritical to subcritical (or from subcritical to supercritical) for 
different situations with Fr=0.8.  
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