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Abstract: We present analysis of the effect of a sub-surface shear current with uniform
vorticity on hydrodynamic surface waves, showing rich physics and striking results. Due to
the non-zero vorticity of the shear flow, standard potential theory solutions are not applicable,
and analysis of the wave field is a delicate problem which we tackle by a combination of
analytical and computational means. We compute and analyze linearized surface wave
solutions to two fundamental problems: initial value problems (ring waves from a localized
disturbance) and ship waves. The pattern of ring waves from an initial disturbance is
significantly affected by the current, most strikingly so gravity driven waves in deep waters.
Next, ship wave patterns in different parameter regimes are presented with special emphasis
on the transition from sub-critical to supercritical wakes, a transition governed by a subtle
interplay of the effects of the shear current and finite water depth.

1 INTRODUCTION

Only very recently has research progress been made on wave-current problems in three
dimensions, although a large literature exists on wave-current interactions in two dimensions
(see [1]-[4] and references therein). A current other than a uniform one complicates the
problem because potential theory, the standard tool in linear wave theory, is not an option
once vorticity has been introduced in three dimensions. Of particular interest is the simplest
model where the shear flow is assumed to have spatially constant vorticity (a Couette profile).
Although not commonly encountered in practice, the uniform vorticity profile has the
advantage of allowing analytical progress, being scale independent and facilitating physical
transparency since the shear flow is characterized by a single parameter. The author in [5] and
[6] successfully obtained a general solution of the classical Cauchy-Poisson problem as well
as ship waves by solving linearized Euler and continuity equations. And in [7], an initial value
problem with prescribed impulsive pressure is solved for this particular model as well,
providing confirmation of the results in [6].

Classically, we have two perspectives when analyzing wave patterns, either a transient one or
a stationary one in which the observer follows the travelling wave, applicable for ship waves.
In the present paper, we will analyze these two by a variation of external boundary and initial
conditions. Through a combination of both analytical and computational approaches, we
obtained the corresponding wave patterns. Compared to the various methods which directly
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solve governing equations and boundary conditions, our calculations are computationally
cheap without loss of accuracy in the linear wave regime. It is also easily parallelizable.

Based on efforts of [5] and [6], the present paper mainly focuses on wave patterns resulting
from interactions between wave and shear current with uniform vorticity in three dimensions.
We emphasize two fundamental problems: initial value problems and ship waves.
Correspondingly, we first derived general solutions for a particular wave-current system.
Then, by using an impulsive pressure at t=0" and a series of impulsive pressure pulses
moving with constant speed, we obtained solutions for the ring wave pattern and ship waves,
respectively. We thereafter turn to the numerical method before presenting a brief analysis of
the influence of vorticity to the ring patterns both in infinite and shallow waters. Finally, the
transition of ship wave patterns between subcritical and supercritical cases in different
parameter regimes are demonstrated.

2 MATHEMATICAL MODEL AND SOLUTIONS OF SURFACE ELEVATION
2.1 Description and coordinate system

In the present paper, incompressible flows are considered, and we assume that viscosity is
negligible. In particular we mainly consider the three dimensional wave-current system with
uniform depth 4, see Fig. 1. We choose the coordinate system so that the undisturbed water
surface is at rest. A shear current with velocity U(z)=Sz along the x axis is present underneath
the water surface, where S is the constant vorticity. Although the constant vorticity model
allows the use of potential theory in 2D, it is no longer an option in three dimensions [5].
Hence we turn to the continuity and Euler equations as the governing equations, which are
V-V=0, (1

DV _ 1
e =,VP g, )

in which operator vV =(d/6x,0/dv,0/02) .,V =V (x, y, z, t) = (U(z)+ u, v, w) 1s the fluid velocity
with small velocity perturbations u, v and w, and total pressure P = —pgz + p with small

perturbation p. The density of the fluid is p, and g is the acceleration of gravity pointing in
the —z direction.

Figure 1: Three dimensional wave-current system with uniform depth and coordinate system
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The different problems considered differ in their boundary and initial conditions. For the ring
waves, we consider a localized initial pressure pulse acting on the free surface for a very short
time (using a Dirac delta function) when the surface is at rest. Ship waves may be generated
by summing up a continuous series of pressure impulses moving at constant velocity V; this
procedure is an equivalent alternative to the procedure used in [5] assuming that the waves are
stationary as seen from the ship [8]. Generally, for either situation, linearized boundary
conditions at the free surface and seabed can be respectively written as

W, = (%+U(2)%j
: ot Oox

(P=pgE)|._) = Peu

Wl—_p =0, 4)

in which (= {(x, y, ?) is the surface elevation relative to the undisturbed surface, and p_,(x,y,?)

is the external pressure disturbance, which we assume known. For ring waves, we assume that
the external pressure is zero for # < 0 and imparts a short impulse on the free surface at =0
described by a Dirac delta function. Ship waves can be generated by a constant, moving
pressure - p,,(x,y,t), expressed so that p,, (&)=p,, (&) , in which §=x-V1, & =x is the

=0 (> 3

pressure distribution at r=0 and x = (x,y) is the position vector. Since our theory is
linearized, a continuously moving pressure can be replaced by a continuous series of short
impulses integrated over time from -oo to ¢, and superposition thus allows the formation of
ship waves by adding up a continuous train of ring waves.

2.2 Solutions of the surface elevation

We follow the same steps as in [5] and [7] and introduce a Fourier transform in the xy plane to
all physical quantities, which are defined

2 .
u(y,2,0,v007,2,0,wi 201 = [[ = [A(k 2,t), 7 (k 2,t), #(k,z,t)]**)

@2n)*

k-~ ik'x
p(x,y,2t) = ff (zn)zp(k, z, t)ek , }

5)
d’k « ik (
ey t)=[f (Zn)zz(k, t)ex,

d’k ik-x

pext(x’ » t) = ff (27'[)2 pext (k' t)e ’ )

in which wave vector k = (ky,k,) = (k cos0, k sinf). Applying the Fourier transform to Eq. 1-
2 and with the impermeability condition at the seabed, we obtain the general solutions
w = kAsinh k(z + h)
p/p = —(A + ik UA)coshk(z + h) + (iSk,A/k) sinh k(z + h) } ’
In which A(k, ?) is spatially constant. Substituting Eq. 6 to boundary conditions at the free
surface, we obtain

(6)

KA(k, t)sinhkh = } %

—Acoshkh + (iSk,A/k) sinh kh — g = Poyxe/p
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in which we define A, as A(k,0), £, as £(k,0) , and we used the condition in which current

velocity at free surface is zero (otherwise there will be one more term in the linearized
kinematic equations).

A Gaussian distribution is used to define the initial pressure impulse at /=0, which we express
as

p, () =15(He ™), ®)

wherein « is the width of the pulse, and

2

b, = 15(t)azef(ka/2”) 1

f S(t)dt = Té‘(t)dt =1 ®

Referring to [7], by applying Laplace transform to Eq. 6 and substituting the initial impulsive
pressure distribution yield the surface displacement

e Td)/w —K*PI tanh KH sin T+/Q? + Q2 SRX-0r)k2e) 10)
A 4pr Q2+ O

in which Q =-FrcosytanhKH , Q+Q;=(Fr,cosytanhKH)’+KtanhKH , and the non-
dimensional quantities are defined in Table 1. In the table, there are three Froude numbers
which are defined to examine effects of different parameters: vorticity, ship velocity and
water depth.

Table 1: Definition of the physical and non-dimensional quantities

Physical quantities Non-dimensional quantities
¢ {/a
h H=h/a
r(x) X=r/a (X=x/a)
¢© R=&a (R={/a)
(x.) (X.Y) = (/a, y/a)

t T=t/Ja/g
W2 O, = wyp4/a/g

k (k) K=ak ( K=ak )
S Fry =S\/a/g
v Fr, =V/\/gh; Fr =V/\[ga
I PI=I/(pa,/ag)

When simulating the ships or the moving source, we still use the Gaussian pressure impulse
but with constant moving speed. Particularly, for different times, we have ring patterns
outgoing from the moving source (or the ship), and the continuous ring patterns caused by the
moving source will ultimately result in a ship wake as previously described and sketched in
Fig. 2. This description of ship waves goes back to Lord Kelvin [9]. However, we will
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illustrate in subsequent sections that the wave patterns differ significantly from the classical
Kelvin pattern when a shear current is present.

As for the ship wave, we first consider the surface disturbance of time t caused only by an
impulsive pressure at a previous time t, (ty < t). The moving source can be expressed as

p, (x.0)=p,(x-Vt,t-1,) . (11)

Figure 2: ship waves resulted from continuous ring waves

By always considering an origin moving with the source and using previous result, we obtain
the surface disturbance

‘ la= T(WT —K?PI tanh KH sin(T —T,)/Q? + Q2 O(T — T, ) ™R KFreoss -0 T TR g (1)
o S Y 4702 + @2

in which 6 is the Heaviside step function.

Figure 3: Definition of different angles used in this paper

The surface disturbance at time ¢ can be obtained by integrating contributions from the
impulsive pressure disturbance for all of the previous moments, which is expressed as
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$=[dig, . (13)

Here, we choose the integral range from —oo and impose the radiation condition by assuming
that all of the physical quantities have increased slowly from zero at —oo to its present value.
Correspondingly, all of the quantities will be multiplied by the factor e®t, in which € is an
infinitesimal positive number and makes sure that Eq. 13 converges. Ultimately, we will get
the solution by solving the limit for £ approaching to 0*. It should be noted that we first apply
all of the quantities with the form multiplied by term e®® back to the original governing
equations, and then follow the whole procedures from Eq. 1-12, thereafter we substitute the
new expressions to Eq. 13. This method yields a solution with a stationary phase [8] and we
find

Sla= limj‘ (14)

e—0"

Pidy T K tanh KHe™ 527 4K

(2r)*5  (1-Frscosycos(y+f))tanhKH g 2FtKcosy — Frscos(y + 8)tanh KH
K- > —ic— 5

(Frcosy) V (Fr cosy)

in which definitions of  and y can be seen in Fig.3, which is a brief sketch regarding angles

that we use in this paper. Eq. 10 and Eq. 14 are the general solutions with which we will use
as the basic foundation of further numerical simulations.

2.3 Subcritical and supercritical situations for ship waves

We obtain ship waves in a stationary phase where transient waves make no contribution to the
ship wake. Physically, stationary phase refers to a situation where component of the ship
velocity in the direction of wave propagation equals the phase velocity, and can be expressed
(see [8] and [10])

kVcosy =ke (k,y+p) , (15)

in which

ke, (k,y + B) :J_r\/gktanhkh+S2 cos’(y + ) tanh’ kh /4 — Scos(y + ) tanh kh /2 .

For a sufficiently fast source a situation may arise when the maximum phase velocity in some
directions of wave propagation is insufficient for the wave to keep up with the source. We
find that these plane wave components, for which Vcosy >¢, . (k,y + ), make no contribution

max

to the train of waves. A subcritical situation refers to the case when all propagation directions
contribute to the far-field waves and the equation ¥ cosy = c(k,y + #) has a solution & (y) for

every y.
3 NUMERICAL SOLUTIONS AND SPECIAL CASES

In the previous sections we presented analytical solutions for the particular model presented in
this paper. Nevertheless, due to the complicated expressions of the general solution, observing
the physical phenomena requires numerical investigation. Hence, numerical evaluation of the
integrals in equations (10) and (14) is performed and results are presented below. Note that
with these equations, the surface elevation at each point (and similarly, the velocity
components in any given point below the surface, not performed here) is calculated
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independently of all other points, meaning that parallelization is immediate by simply
dividing the grid into segments.

3.1 Ring waves

Transient ring waves from an initial pressure impulse are shown in Fig. 4, for 3 different
cases: (a) Frs =0, H=20 (deep water, no shear); (b) Fr=1, H=20 (deep water, moderate shear);
(c) Fre=1, H=0.1 (shallow water, moderate shear). According to this figure, a perfect ring
pattern is shown when there is no shear and there is little effect of moderate shear to waves in
shallow water. On the other hand, in deep water the influence of a moderately sheared current
to the ring patterns is clear to see, resulting in asymmetric waves from a symmetric pressure
input.
(a) Without shear current: Fr=0, H=20

4 4

Time =0.10 Time = 1.00

i
[

- -4
0 8 6 4 2 0 2 -0 -8 -6 -4 -2 0

(b) Moderate shear current: Fr=1, H=20
4 4

Time=0.10 Time = 1.00

[}
i
=
oo

6 -4 -2 0

[}
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(c) Moderate shear current: Fr=1, H=0.1

Time =0.10

4 4

Tome = 100

Time =4.00 Time =9.00

0 8 6 -4 2 0 2 -0 -8 -6 -4 2 0 2 -0 -8 -6 -4 2 0 2
Figure 4: Waves in different times with (a) Fr=0, H=20; (b) Fr=1, H=20; (¢) Fr=1, H=0.1. Contour scaling
here and all figures below in Chpt. 3.1 is that areas where {(X,Y,T) /a >0.2 (o (X, Y, T=0.1)/a are white and

XY, T) Ja<-0.2 {nax (X, Y, T=0.1)/a are black, with linear color gradient for amplitudes in between.

We further compared the transient waves of shallow water and deep water with strong shear
vorticity, Fr=4, see Fig. 5. It can be seen in Fig. 5 that waves of deep water with strong shear
are no longer rings at all, and we can clearly observe effects of vorticity in shallow water in
this figure. Clearly the effect of the shear current is much more pronounced in deep waters
than in shallow waters. Similar phenomena can also be seen in [5] and [7].

(a) Shallow waters H=0.1

4
Time =0.10

Tome = 100
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(b) Deep waters H=20

Time =0.10 Time = 1.00

4

Time =4.00 Time =9.00

-0 -8 -6 -4 -2 0 2 - -8 -6 4 -2 0 2 - -8 -6 4 -2 0

[

Figure 5: Waves of deep and shallow waters in different times with strong shear current: Fr=4.

3.2 Ship wave patterns

We now turn to ship waves with a shear current in infinite water depth (Fig. 6a) and without
shear current in finite water depth (Fig. 6b). As is shown in Fig. 6, Kelvin wake angles (as
defined in Ref. [6]) are no longer constant in finite waters even without shear current and
reaches to peak for Fry=1 — this fact is well known and was reported by Havelock over a
century ago [12]. A similar effect is caused by a shear current [6]; even in infinite waters, the
Kelvin angle is non-constant but depends on the shear Froude number Fr; even though the
Froude number Fr is constant. When the source moves at supercritical velocity, the transverse
waves directly behind the source vanish since they are too slow to keep up with the source.
The wave patterns showed in Fig. 6b accord well with Ref. [10] which illustrates variation of
Kelvin angles with Fr, and a critical situation at Fr,=1 where the Kelvin angle reaches to 7/2.

We furthermore illustrate the variation of ship wave patterns between subcritical and
supercritical cases with shear current in waters of different depth. Fig. 7 shows this
phenomenon, which presents ship wave patterns of different shear vorticities in both finite
and infinite waters. In the figure, the shear is made gradually stronger, and a transition from
subcritical to supercritical or vice versa is observed. Wave patterns are more complicated in a
finite water than in an infinite water because of the nontrivial interplay between shear and
finite depth. When the angle between ship motion and current changes, waves can experience
a transition from subcritical to supercritical as well as from supercritical to subcritical in finite
water cases, the former of which is showed with f=30°, and latter of which is with f=150°.
However, a supercritical to subcritical transition due to increasing Frs will never occur for
infinite waters. A more detailed explanation for this phenomenon is given in [8] (some
preliminary conclusions are found in [10]) where a general criticality condition as a function
of Fry, Fry and S is given.
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(a) Different shear currents in infinite waters with $=90°
5

X ; -1
.‘.{:_-_/'-'

=
Frs=0.75

10 -8 -6 4 2 0 -10 -8 -6 -4 2 0
(b) Without shear current in different water depth

-0 -8 6 4 -2 0 -10 -8 6 4 2 0 -10 -8 6 -4 -2 0 -10 -8 -6 -4 -2 0
Figure 6: Ship waves with F7=0.8. In this figure and all figures below in Chpt. 3.2, red dashed lines represent
the Kelvin angles as defined in Ref. [6], axes are in units of A;~2raFr*, and relif shading from light to dark has
scaled by corresponding maximum amplitude of surface displacement, areas where £&>0.4 &, are light and &<-
0.3 &, are dark, with linear gradient color for amplitude in between.

4 CONCLUSIONS

In the present paper, wave patterns were calculated for two fundamental problems in the
presence of a shear current with constant vorticity — an initial value problem and a stationary
phase problem caused by a moving object. We first derive analytical results which are
subsequently subjected to numerical computations. For an initial problem of ring waves
created by a short pressure impulse, we demonstrated how the shear affects surface waves
more strongly in deep waters (compared to size of disturbance) than in shallow waters. In the
former case the ring waves can be distorted to such an extent that they are no longer ring
shaped at all. As for ship waves, we illustrated that transitions of the wave pattern both from a
supercritical to subcritical and from a subcritical to supercritical can occur in finite waters
when increasing the shear vorticity. Nevertheless, only subcritical to supercritical can happen
in deep waters. Thus a subtle interplay of water depth and shear was likewise shown to affect
the ship waves.

10
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Finite water depth with Fr,’=1.4 and f=150°. Critical value at Fr, ~ 0.48. (Supercritical to subcritical)

5 5 5

o
Frs=1.00
y "

KT GO T, QY T T T TR, | ST - Y B N R B

Infinite water depth: f=150°, Fr,’=0. Critical value at Frs~ 15. (All panels subcritical)
5 5 5

Lh

10 -8 6 4 2 0 -10 -8 -6 4 2 0 -10 -8 -6 4 2 0 -10 -8 6 -4 2 0
Finite water depth with Fr,°=0.8 and $=30°. Critical value at Fr, ~ 0.23. (Subcritical to supercritical)

LN

N

-10 -8 -6 4 -2 0 -10 -8 -6 4 -2 0 -10 -8 -6 -4 -2 0O
Infinite water depth: $=30° . Critical value at Fr, = 1.07. (Subcritical to supercritical)
z 5 .

q

-5 -5

-0 -8 6 4 -2 0 -10-8 6 -4 -2 0 -10-8 -6 4 -2 0 -10-8 -6 -4 -2 0
Figure 7: Ship wave patterns varying from supercritical to subcritical (or from subcritical to supercritical) for
different situations with F7r=0.8.
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