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Sheared free-surface flow over three-dimensional
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When shallow water flows over uneven bathymetry, the water surface is modulated.
This type of problem has been revisited numerous times since it was first studied by
Lord Kelvin in 1886. Our study analytically examines currents whose unperturbed
velocity profile U(z) follows a power law zq, flowing over a three-dimensional uneven
bed. This particular form of U, which can model a miscellany of realistic flows, allows
explicit analytical solutions. Arbitrary bed shapes can readily be imposed via Fourier’s
theorem provided their steepness is moderate. Three-dimensional vorticity–bathymetry
interaction effects are evident when the flow makes an oblique angle with a
sinusoidally corrugated bed. Streamlines are found to twist and the fluid particle
drift is redirected away from the direction of the unperturbed current. Furthermore,
a perturbation technique is developed which satisfies the bottom boundary condition
to arbitrary order also for large-amplitude obstructions which penetrate well into the
current profile. This introduces higher-order harmonics of the bathymetry amplitude.
States of resonance for first- and higher-order harmonics are readily calculated.
Although the method is theoretically restricted to bathymetries of moderate inclination,
a wide variety of steeper obstructions are satisfactorily represented by the method,
even provoking occurrences of recirculation. All expressions are analytically explicit
and sequential fast Fourier transformations ensure quick and easy computation for
arbitrary three-dimensional bathymetries. A method for separating near and far fields
ensures computational convergence under the appropriate radiation condition.

Key words: river dynamics, shallow water flows, shear waves

1. Introduction
Intriguing distortions can often be seen on the surface of flowing water, caused

by unevenness in the bed beneath. Lord Kelvin, then Sir William Thomson, was the
first to publish expressions governing such flow distortions (Thomson 1886), along
with a myriad other contributions to hydrodynamics, now cemented in history and
standard in popular text books (e.g., Lamb 1932). Parallel to this, Lord Rayleigh
derived seminal theory for similar, closely related, problems such as the standing
waves which form atop flowing water when the water is excited by a steady pressure
disturbance (Rayleigh 1883). We review the extensive literature below, but note

† Email address for correspondence: andreas.h.akselsen@ntnu.no
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Sheared free-surface flow over three-dimensional obstructions 741

already that no study to date includes the possibility of a velocity of non-trivial
depth-dependence, which is indicated by recent studies to affect the stationary waves
behind obstacles significantly (e.g., Li & Ellingsen 2016).

Linear theory of the kind adopted by Lords Kelvin and Rayleigh is particularly
tractable, making it a powerful tool for examining fundamental features of bed–surface
wave interactions. This was demonstrated by Kennedy (1963) in his study of sand
dune formations. Coupled with a simple, slow time scale sediment transport equation,
Kennedy was able to make good predictions about the wavelength and velocity
features of dunes. Researchers have since resorted to more sophisticated techniques in
order to enrich their studies with nonlinear dynamics; conformal mapping approaches
have been popular, particularly in predicting flows over sharp protrusions. Conformal
mapping is not restrictive in terms of steepness but is confined to irrotational,
two-dimensional flows and the mapping must be made to match the shape of the
particular bathymetry. A relatively simple such example is the curvilinear co-ordinate
transformations adopted by Benjamin (1959) in his study of boundary layer shear
friction over sinusoidal bathymetries. Transformations that allow the problem to be
described in an integro-differential system have featured regularly during the last few
decades, often following in the steps of Forbes & Schwartz (1982) and Vanden-Broeck
(1997).

Boundary integral methods have been adopted also for three-dimensional nonlinear
free-surface flows (Forbes 1989). Buttle et al. (2018) employed a Jacobian-free
Newton–Krylov scheme for this purpose to study the stationary three-dimensional
wave patterns forming behind a Gaussian-shaped flow obstacle. Buttle et al. (2018)
further points out that this problem is analogous to the ship wake of a moving surface
pressure source, about which a rich body of literature already exists. Fully numerical
approaches require for three-dimensional problems significant computer time and
memory storage (often involving supercomputers) but can provide reliable and
accurate solutions. In contrast, linearised solutions, as derived herein, are computed
at almost negligible cost and afford much wider exploration of the physical aspects
of our problem. These solutions are naturally approximate and caution is needed with
regard to the range of their validity.

Alongside boundary integral representations, perturbative weakly nonlinear approxi-
mations including higher-order interactions among normal modes are frequently
adopted in the recent literature. Some of these allow the problem to be cast in terms
of a forced Korteweg–de Vries equation. The forcing can for example be generated
by the bathymetry, a sluice gate or some other internal or surface pressure source
(Akylas 1984; Cole 1985; Mei 1986; Katsis & Akylas 1987; Wu 1987; Dias &
Vanden-Broeck 2002; Binder, Dias & Vanden-Broeck 2006; Binder & Vanden-Broeck
2007; Binder, Blyth & McCue 2013).

Among the bottom topographies commonly considered is the half-cylinder (Forbes
& Schwartz 1982; Forbes 1988; Zhang & Zhu 1996), the triangular obstacle (Dias
& Vanden-Broeck 1989; Chuang 2000; Binder & Vanden-Broeck 2007) and the step
(King & Bloor 1987; Binder et al. 2006).

Typical of these problems is the way in which their asymptotic behaviour depends
on the criticality of the flow; a notable example (which falls outside the scope of the
present paper) is the case of an hydraulic fall (Forbes 1988; Dias & Vanden-Broeck
1989). Binder et al. (2013) provide an overview of 11 such asymptotic flow types.

The present work is founded on linearisation and Fourier’s principle, as in
Lords Kelvin and Rayleigh’s pioneering work. This approach is, however, extended
to bathymetries of finite amplitude. A significant advantage of this linearisation
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strategy is that it is not restricted to potential theory and so permits rotational
flows. Furthermore, it does not require conformal transformations, thus permitting
three-dimensional arbitrary bathymetries.

We shall in the present work consider currents which, unperturbed, are represented
by a power law

U= (U, 0, 0); U = zq
[q, z > 0], (1.1a,b)

z being a vertical distance and q a constant. The power law is well suited for
analytical evaluation, as will be shown. The earliest examples of its utilisation in the
present context that we are aware of are Lighthill (1953) and Fenton (1973) who
adopted a value q = 1/7 and touched upon many of the results encountered herein.
We too adopt the 1/7 exponent in several of our numerical examples. Inspiration has
also been drawn from Phillips & Shen (1996) and Phillips, Wu & Lumley (1996)
who, allowing q to remain arbitrary, utilised the power law profile family to neatly
represent a multitude of current profiles within the same analysis. These papers
deal with the flow stability to longitudinal vortices, related to the oceanographic
phenomenon on Langmuir circulation under strong shear. The uniform current most
commonly considered is then recovered by setting q to zero. A linear current profile
is recovered when q= 1. This profile has been investigated frequently in the literature
since it is – in two dimensions – the only rotational flow for which potential theory
is applicable. In between, profiles resembling that observed in turbulent bottom
boundary layer flows reside, while flows with a surface shear layer may be modelled
with q> 1.

The power law (1.1) has alongside the log law traditionally been used to represent
statistically averaged boundary and shear layers. Prandtl first suggested the power law
exponent q = 1/7 for low Reynolds number turbulence over smooth boundaries. A
range of values have since been suggested for turbulent flows, ranging between 1/3
to 1/12 depending on roughness and Reynolds number (Chen 1991; Cheng 2007;
Dolcetti et al. 2016). These values generally increase with the relative roughness of
the boundary (shallowness of the flow). Barenblatt (1993) made the since-celebrated
conjecture that the power law exponent should be inversely proportional to the
logarithm of the Reynolds number. The log law can thus be regarded as an asymptotic
limit of the power law as the Reynolds number approaches infinity. Barenblatt
stressed that both the log law and power law are supported by an equally rigorous
theoretical foundation, differing only in physical assumptions. There now seems to be
a general consensus that the power law preforms notably better than the log law over
rough boundaries or at low Reynolds numbers where the overlap layer in relatively
narrow (Hinze (1975), Djenidi, Dubief & Antonia (1997), George & Castillo (1997),
Bergstrom, Tachie & Balachandar (2001) and references therein).

Explicit analytical solutions exist also for exponential current profiles (Abdullah
1949; Lighthill 1957). Predictions for weak arbitrary currents may be attainable
using perturbation techniques, as was proven for surface waves by Shrira (1993).
Approximate methods, and methods of numerical integration, are available for strong
arbitrary currents; see brief reviews in Ellingsen & Li (2017) and Li & Ellingsen
(2019), respectively.

We here consider the situation where a sheared current with a free surface travels
over a bottom of varying depth. Variations of the bottom topography do not need
to be small compared to the water depth nor is its steepness restricted. However,
we do assume the perturbations of the water surface have low steepness so as to
allow linearisation. The reason is not that allowing higher-order surface effects would
involve undue difficulty, but rather that, as indicated by Akselsen & Ellingsen (2019),
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Sheared free-surface flow over three-dimensional obstructions 743

z

x

U = zq 1 Ω̂s

Ω̂b
˙̂b
∂

FIGURE 1. (Colour online) Sketch of the problem set-up.

the interaction of shear and higher surface deformation harmonics introduces a further
range of phenomena which would increase the scope of this study beyond reason.
These questions we leave for future investigations.

The paper is structured as follows: our problem is modelled in § 2 and its linearised
solution derived in § 3. This solution is further analysed in § 4 where its asymptotic
behaviour and extension to spectral bathymetry representations are considered. The
linear solution of § 3 is further extended to bathymetries of finite amplitude in § 5.
Results are presented in § 6, followed by a discussion and summary in §§ 7 and 8,
respectively.

2. Model equations
The model considered in this work applies to stationary, incompressible flows where

viscosity and surface tension effects are ignored. Our problem is readily converted to
non-dimensional form using the profile depth h and surface current velocity Us, as
follows:

(x, y, z) 7→ (x, y, z)h, k 7→ kh−1, ût 7→ ûtUs, p̂t 7→ p̂tρU2
s , (2.1a−d)

k = (kx, ky) is the wavenumber in the surface plane, ût the fluid velocity and p̂ the
pressure. A solution will be constructed in Fourier space by considering a single
mode. Intuitively, one may in this frame regard the problem configuration as that
of water flowing over a sinusoidal bed, as sketched in figure 1. The shear flow
profile is represented by the power law family (1.1). The mean vertical position of
the bed itself is placed at some elevation z = δ > 0 above the shear profile origin.
Thus, the two parameters q and δ govern the current profile felt by the bed, and
the Froude number Fr its strength. The bathymetry undulations redirects the current
energy to perturb the velocity field and otherwise flat free surface. With the prescribed
non-dimensionalisation, the elevation of the surface, ζ̂s(r), is oriented about z = 1,
just as the bed elevation, ζ̂b(r), is oriented about z = δ. Symbols η̂ are used when
referring the elevation relative to the unperturbed surface height.

The problem to be solved consists of the stationary incompressible Euler equations,
along with an impermeability condition at the bed and dynamic and kinematic
boundary conditions at the surface;

(ût · ∇̂)ût + ∇̂p̂t =−Fr−2ez

∇̂ · ût = 0

}
; ζ̂b 6 z 6 ζ̂s, (2.2a)
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744 A. H. Akselsen and S. Å. Ellingsen

ût · ∇̂ζ̂s = ŵ
p̂t = 0

}
; z= ζ̂s, (2.2b)

ût · ∇̂ζ̂b = ŵ; z= ζ̂b, (2.2c)

with Fr=Us/
√

gh being the Froude number and ∇̂= (∂x, ∂y, ∂z).

3. Linearised solution
Begin by separating the perturbed part of the internal flow from the total,

ût(r, z)=U(z)+ û(r, z), (3.1a)
p̂t(r, z)= (1− z)Fr−2

+ p̂(r, z), (3.1b)

ζ̂b(r)= δ + η̂b(r), (3.1c)

ζ̂s(r)= 1+ η̂s(r), (3.1d)

and assume that the perturbed part is much smaller in magnitude than that adhering
to the free stream. (The reference surface pressure has been made to equal zero.) Now
let the bottom topography be described in terms of a Fourier spectrum

ηb(k)=Fkη̂b(r), ηb(0)= 0, (3.2a,b)

where Fk denotes a Fourier transform onto a wave vector plane k. Real-space flow
fields become

(û, p̂, η̂s)=F−1
k (u, p, ηs), (3.3)

by virtue of the lower boundary condition (2.2c).

3.1. Internal flow
After linearisation, the Euler equations read

ikxUu+U′w+∇p=O[. . .], (3.4a)
∇ · u= 0, (3.4b)

where ∇= (ikx, iky, ∂z). The error estimate is O[(k3
+ k−1)w2

] for the x-component and
O[(k2

+ 1)w2
] for the y- and z-components, assuming kx∼ ky∼ k. Eliminating u, v and

p yields the Rayleigh equation

w′′ − (k2
+U′′/U)w=O[(k3

+ k−1)w2
], (3.5)

k= (k2
x + k2

y)
1/2. Upon substituting w(z)=

√
zW(z) (Phillips et al. 1996), the linear part

of (3.5) reduces to the Bessel equation

W ′′ +
W ′

z
−

(
k2
+
(1− 2q)2

4z2

)
W = 0 (3.6)

whose homogeneous solutions are well known; two such exist which are superposed
with the coefficients c+ and c−, to be determined from the boundary conditions. The
horizontal velocity components are found by integrating (3.4a). We write the solution
for a generic flow variable φ in the form

φ = ε
∑
±

φ±c±, (3.7)
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Sheared free-surface flow over three-dimensional obstructions 745

with

w± = i
√

zI±(q−1/2)(kz), p± =
kx

k
U(z)
√

zI±(q+1/2)(kz), u±h =
iexU′w± − kp±

kxU
,

(3.8a−c)
Iα being the modified Bessel function of the first kind of order α, uh = (u, v) the
horizontal velocity vector and ex= (1, 0) is the horizontal unit vector. The function ε
represents the intensity of the internal flow perturbations, to be related to the intensity
of the flow disturbance from the bathymetry. This we have separated from the weight
coefficients c± which are related to the unperturbed flow alone. The summation
over ‘±’ means a sum is taken over ‘+’ and ‘−’, being either signs or labels as
context requires. (This form of (3.8), written in terms of the modified Bessel function,
becomes linearly dependent at q= 1/2, but is adopted here for symmetry rather than
resorting to the second kind of modified Bessel function. Limit values q→ 1/2 are
evaluated in place of q= 1/2.) Note that a stream function û= ∂zψ̂ , ŵ=−∂xψ̂ may
easily be constructed in the case of two-dimensional flow. One finds

ψ̂(x, z)=
zq+1

q+ 1
+F−1

k (iw/kx); [ky ≡ 0]. (3.9)

3.2. Boundary condition
The lower kinematic boundary conditions (2.2c), linearised about z= δ, reads

w(δ)= ε +O[(k+ k3)η2
b] (3.10)

in Fourier space, where
ε = ikxU(δ)ηb. (3.11)

Linearised about z= 1, the upper boundary conditions (2.2b) yield

ηs − Fr2p(1)=O[Fr2w(1)2], (3.12a)
ikxηs −w(1)=O[(k+ k−1)w(1)2]. (3.12b)

Equation (3.4) has here been used and U derivatives assumed order unity to simplify
error estimates. It is tempting to relate these estimates back to the amplitudes of the
bed, but, as will be seen, these variables may not scale in a linear manner.

Either of the surface conditions (3.12) yields ηs directly. The remaining coefficients
c+ and c− are readily determined by the other surface condition and the kinematic
condition at the bed, equation (3.10). In terms of the functions in (3.8),

c± =
[

w±(δ)−
w±(1)− ikxFr2p±(1)
w∓(1)− ikxFr2p∓(1)

w∓(δ)
]−1

. (3.13)

Note that c± approaches finite values both as Fr2
→ 0 and Fr2

→∞.

3.3. Critical Froude number
From (3.13) it is seen that there may exist particular parameter values for which both
field coefficients diverge. We shall later examine the impact of such singular cases in
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FIGURE 2. (k2
x/k)Fr2

crit and Frcrit(ky = 0) as functions of q and wavenumber for two
values of δ.

a spectral bathymetry representation. At present though, a single mode is considered.
The critical Froude number Frcrit, at which the coefficient denominator is zero, is

k2
x

k
Fr2

crit(k)=
Iq−1/2(k)I−q+1/2(kδ)− I−q+1/2(k)Iq−1/2(kδ)
Iq+1/2(k)I−q+1/2(kδ)− I−q−1/2(k)Iq−1/2(kδ)

, (3.14)

which is found to be always real positive for q> 0, 0<δ< 1. Plots of Fr2
crit are shown

in figure 2. For uniform current profiles, q = 0, one recovers the well known result
(Thomson 1886) (kxFrcrit)

2/k = tanh[k(1− δ)] and {coth[k(1− δ)] − k−1
}
−1 for linear

ones (q= 1). All profiles 0 6 q 6 1 have the short wave asymptote (kxFrcrit)
2/k→ 1

as k→∞. From figure 2 it is further seen that Frcrit diminishes monotonically with
increasing wavenumber. The largest critical Froude number, graphed in figure 3, is

Frcrit,max = lim
k→0

Frcrit =
k
|kx|

√
1− δ1−2q

1− 2q
(3.15)

and marks the distinction between subcritical and supercritical flows over bathymetries
represented with an infinite Fourier spectrum, as shall be expounded upon later. Also,
(kxFrcrit)

2/k→ I−(q−1/2)(k)/I−(q+1/2)(k) in the limit δ→ 0 if q< 1/2, agreeing with the
result of Lighthill (1953) for a standing wave over a flat bed with a q= 1/7 profile.
The critical Froude number for the q= 1/2 profile is obtained by considering the limit,
yielding

k2
x

k
Fr2

crit

∣∣∣∣
q→1/2

=
I0(k)K0(kδ)−K0(k)I0(kδ)
I1(k)K0(kδ)+K1(k)I0(kδ)

, (3.16)

where Kα is the modified Bessel function of the second kind. In the limit kx =

k→ 0 and q = 0 one retrieves the expected Fr2
crit = 1 − δ, or just 1 if the Froude
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Sheared free-surface flow over three-dimensional obstructions 747

number is instead defined based on the actual depth h − δ in physical units. (It is
also common to define the Froude number based on the mean velocity for which
Frm = Fr(1− δq+1)/[(1− δ)(1+ q)].)

Singular states are a common artefact of resonances when linearisation has been
performed. With the allowance of transient dynamics, these singularities are often
associated with algebraic wave growth as current energy is transferred to the perturbed
flow field without feedback (Benney 1961; Craik 1970; Akselsen & Ellingsen 2019).
The asymptotic growth of critical flow over a bump or under a pressure patch goes
in linear theory as the cube root of time (Akylas 1984; Cole 1985), but a linear
steady state exists if the forcing is compact and the flow unrestricted in the spanwise
direction (Katsis & Akylas 1987). In the setting of a monochromatic bathymetry with
a critical Froude number, resonance can be interpreted as the phase velocity being
zero relative to the bed, denying dispersion of the bathymetry induced disturbances.
This issue can, however, be resolved and a steady state reached when considering the
full nonlinear problem. Classical Stokes wave theory provides a conceptual indication
of how; as the level of nonlinearity increases with growing wave amplitude so does
the Stokes wave phase velocity relative to that of a linear wave. The shift in phase
velocity detunes the Stokes wave such that it cannot remain stationary relative to the
bed. Resonance is thus broken. Mei (1969) was the first to consider the Stokes wave
solution near criticality. He discovered triple-valued steady state solutions. In order to
deduce which solutions are likely occur in nature, Sammarco, Mei & Trulsen (1994)
examined the transient problem and its initial stability and long-time evolution.

4. Asymptotic behaviour
Consider next the composite solution as a spectrum of modes in a Fourier integral.

It was shown in § 3.3 that the linear theory will, in the frame of a monochromatic
bathymetry, break down for some particular combinations of parameters as a form
of resonance is encountered. Excluding these parameter combinations, and their
immediate neighbourhoods, the derived solution is valid. When, on the other hand,
unevenness in bed topography is of limited spatial extent the Fourier integral must
cover all values of k. If the flow is subcritical (there exists wavenumbers k so
that Frcrit(k) > Fr) then a pair of singular points will be encountered during the
integration. The problem as it stands is indeterminate until a radiation condition is
applied. Following a procedure due to Rayleigh (1883) (see also Lamb (1932, p. 399))
the momentum equations are furnished with an artificial frictional force, −µ(û−U).
The only requirement for this force is that it always dampens perturbations and that
it is vanishingly small, i.e., that µ be infinitesimally small yet positive everywhere.
This provides a direction of time and ensures that causality is obeyed.

Without loss of generality, let this force vary in z according to µ=µ1kxU(z) where
µ1 = 0+ sgn(kx). The resulting modified Euler equations are

ikxU(1− iµ1)u+U′w+∇p= 0,
∇ · u= 0,

}
(4.1)

which, to linear order in µ1, alters the solution (3.7)–(3.8) as follows:

w± = iz(1/2)+(i/2)qµ1I±(q̃−1/2)(kz), p± =
kx

k
(1− iµ1)z1/2+q̃I±(q̃+1/2)(kz), (4.2a,b)

uh =
iexU′w− kp
(1− iµ1)kxU

, (4.3)
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where q̃= q(1+ iµ1/2). Now rewrite the c±-coefficients by inserting (4.2) into (3.13),

c± =
F±(k)
H(k)

, (4.4)

with

F±(k)=±
[

I∓(q̃−1/2)(k)− Fr2 k2
x

k
(1− iµ1)I∓(q̃+1/2)(k)

]
, (4.5)

H(k)= iδ(1/2)+(i/2)qµ1
∑
±

I±(q̃−1/2)(kδ)F±(k). (4.6)

The denominator H is shared by all flow variables and is a dispersion relation for
surface waves atop the flowing water. Its roots may be seen as representing waves
propagating upstream with phase velocity exactly equal to surface velocity, so that
the flow is stationary.

Consider now a two-dimensional flow (ky = 0). A localised unevenness in the
bathymetry generates, for any flow variable, a perturbation of the surface of the form∫

∞

−∞

dkx

2π

G(kx)

H(kx)
eikxx. (4.7)

For example, if computing the surface elevation η̂s from (3.12a) then

G=−ε Fr2 kx

k2
(1− iµ1)

2
π

cos(πq̃) (4.8)

– note that Lord Kelvin’s solution for a uniform current (Thomson 1886, p. 520; Lamb
1932, p. 409),

ηs = ηb

{
cosh[k(1− δ)] −

k
Fr2k2

x

sinh[k(1− δ)]
}−1

, (4.9)

is recovered when putting q=0. The integral (4.7) may be evaluated using well known
techniques from complex analysis. The denominator H(kx) has conjugate roots along
the imaginary axis whose contributions make up the near field. Two roots kx =±α+

i0+ also appear if the flow is subcritical. These are both shifted slightly away from the
real axis into the upper imaginary plane by the artificial friction force. Subcritical flow
here means that there exists a wavenumber such that Fr<Frcrit(k). As seen before, this
is equivalent to checking whether Fr < Frcrit,max, equation (3.15). Above this Froude
number current transport is too great to permit disruptions of the surface to propagate
upstream or remain stationary.

Although it is possible to express the integral (4.7) considering these singular
points only (Lamb 1932, p. 410), a form more suitable for computation is obtained
by adding and subtracting the pole terms (leading term of the integrand’s Laurent
series expansion) inside the integral whenever the flow is subcritical and using
Cauchy’s integral theorem to write (4.7) in the form∫

∞

−∞

dkx

2π

[
G(kx)

H(kx)
−

∑
±

G(±α)
H′(±α)(kx ∓ α)

]
eikkx
+ i
∑
±

G(±α)
H′(±α)

e±iαxΘ(x) (4.10)
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Sheared free-surface flow over three-dimensional obstructions 749

when Frcrit,max > Fr. A prime denotes differentiation with respect to kx and Θ
is the Heaviside function. The poles that hinder numerical convergence are thus
eliminated from the integrand and their effect, a wave train emitted downstream,
appears explicitly in the solution. If the bathymetry obstruction is localised and
centred near x= 0, we may regard the integral term of (4.7) as a ‘near field’ and the
oscillating term as a ‘far field’. No alteration to (4.7) is needed when Frcrit,max < Fr
(supercritical) since this flow consists of a near field only, the real axis being free of
poles.

It is worth noting that when the flow is subcritical the shape of the bed deformation
is of consequence only for the amplitude of the emitted wave train while the current
profile alone dictates the wavelength. In a dynamic sense the downstream far field
wave will have exactly the wavelength of an upstream wave propagating towards
the left at the surface velocity so as to be stationary in the ‘laboratory’ frame. The
dispersion relation of such a wave is a functional of the shear profile U(z) and is,
for arbitrary U(z), readily calculated numerically; cf., e.g., Li & Ellingsen (2019).
Figure 4, which is essentially an inversion of figure 2, shows the wavenumber of the
wave train for given parameters q, δ and Fr. Supercritical flow states, for which wave
trains cease to appear, are excluded from the figure.

In two-dimensional problems, equation (4.10) is readily computed numerically with
the derivative of H(kx) evaluated with discrete differentiation. An example is shown
in figure 5. The extended method for obtaining accuracy in adherence to conditions
at the lower boundary, presented in § 5, is here employed.

In three dimensions the field separation procedure which yielded (4.10) becomes
more involved as roots of G(k) form a continuous path in k-space along which an
integration must be performed. Instead, we opt in three-dimensional problems for
enforcing the radiation condition by allocating a small but finite value of the artificial
friction coefficient µ1 such that the original Fourier integral converges. This is a
tried and trusted method which is equivalent to introducing a low level of artificial
viscosity, see, e.g., Moisy & Rabaud (2014). The artificial friction thus introduced
must be made strong enough for the far field to die out before re-entering the
periodically bounded numerical domain, yet weak enough not to mask any salient
features pertaining to the inviscid flow or noticeably affect the far field wavelength,
which obtains a correction of order µ2

1. The strategy can add to the computational
load since a large computational domain may be required. Many more sophisticated
methods are available such as non-reflecting boundary conditions, yet given the modest
overall computational effort in our examples the simplest approach is adequate.

A final observation is warranted. The limit δ→ 0 of the denominator H in (4.6)
is finite if q < 1/2 and infinite if q > 1/2. This means that infinitesimally small
bathymetry perturbations centred around the current stagnation point z = 0 are felt
within the flow only if dU/dz> 1/

√
z at z= 0. Profiles developing slower than this

are not felt by a bed of infinitesimal amplitude. The feature can be seen in (3.15) and
figure 3 where critical Froude numbers are infinite for q> 1/2 as δ→ 0.

5. A lower boundary condition of nth-order accuracy
Recall that the bathymetry η̂b is prescribed and notice that the lower boundary

condition (2.2c) therefore contains no products of unknowns. This is convenient
for describing the lower boundary condition precisely, without requiring that the
bathymetry perturbations be very small.

Many classical works have employed coordinate transformation techniques to
two-dimensional problems (Benjamin 1959; Stokes 1880; Forbes & Schwartz 1982),
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FIGURE 3. Critical Froude number Frcrit,max, equation (3.15), for the existence of a far
field wave train.
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FIGURE 4. (Colour online) Wavenumber α of far field wave train as a function of q, δ
and Fr.

FIGURE 5. (Colour online) Uniform flow over a cylinder of radius 0.2. The surface, bed,
streamlines and dynamic pressure field p̂+ Fr2z are shown. Fr= 0.5. The extended lower
boundary conditions of § 5 low are applied, which does not affect the features of the wave
train.

but these are not so readily extendible to three-dimensional non-potential flow. A
perturbation approach is instead viable, and the evaluation of (2.2c) at z = ζ̂b is
achieved by Taylor expansion about z= δ. This generates products between variable
derivatives and powers of η̂b, and so a perturbation solution

φ̂ =

∞∑
n=1

φ̂n, where φ̂n =O(η̂n
b); φ ∈ {u, p, ηs} (5.1)
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Sheared free-surface flow over three-dimensional obstructions 751

is postulated. Inserting this series into the bottom boundary condition (2.2c) and using
Taylor expansion about z= δ, one obtains

∞∑
m=0

η̂m
b

m!

[
U(m)∂xη̂b +

∞∑
n=1

(û(m)n · ∇̂η̂b − ŵ(m)
n )

]
z=δ

= 0, (5.2)

where parenthesised superscripts indicate order of derivative in z. Sorting into
consecutive orders of η̂b and imposing that equality holds for each order individually,
one finds the lower boundary condition

ŵn(δ)= ε̂n, (5.3)

where

ε̂n = η̂
n
b

[
U(n−1)

(n− 1)!
∂xη̂b

η̂b
+

n−1∑
m=1

1
m!

(
m

û(m−1)
h,n−m

η̂n−m
b
·
∇̂η̂b

η̂b
−

ŵ(m)
n−m

η̂n−m
b

)]
z=δ

. (5.4)

For bathymetries consisting of many Fourier modes (typically an obstruction localised
in space) the most computationally efficient procedure is to go back and forth between
physical and Fourier space using fast Fourier transforms. That is, having computed
un−1 in Fourier space, the physical field is readily obtained via the transformation
û(m)n−1 =Fu(m)n−1. After evaluating (5.4), the result is transformed back to Fourier space,
εn = F−1ε̂n. The only required adjustment to the linear solution presented in § 3 is
to replace in (3.7) ε with increasing orders of εn. The horizontal derivatives of the
velocity field are readily available via the Fourier transformation, or simply using finite
differences. The z-derivatives are computed in Fourier space – we have constructed a
building block function fa,b,m≡ ∂

m
z [z

b−1/2Ia(kz)] evaluated using binomial statements,

fa,b,m(z)=
m∑

j=0

(
k
2

)j( m
m− j

)
Γ
(
b+ 1

2

)
zb+j−m−1/2

Γ
(
b+ j−m+ 1

2

) j∑
i=0

(
j
i

)
Ia+j−2i(kz), (5.5)

whence

w(m)
n (z)= iεn

∑
±

f±(q−1/2),1,m(z)c±, (5.6a)

u(m)h,n (z)=−εn

∑
±

[
qex

kx
f±(q−1/2),0,m(z)+

k
k

f±(q+1/2),1,m(z)
]

c±, (5.6b)

p(m)n (z)= εn
kx

k

∑
±

f±(q+1/2),q+1,m(z)c±, (5.6c)

U(m)(z)= zq−m
m−1∏
j=0

(q− j)= zq−m Γ (q+ 1)
Γ (q−m+ 1)

, (5.6d)

m= 0, 1, 2, . . . .
The convergence the Taylor expansion of the above expressions will by Taylor’s

theorem be limited to the disc within which the represented function is analytical.
There is a singularity at z= 0 if the current profile is curved (q different from 0 or 1)
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which imposes the restriction ηb 6 δ. Even so, since the first few terms of the Taylor
series typically decrease in magnitude before growing again, good approximations are
often obtained by truncating the Taylor series one term before the smallest in the
manner recommended by Bender & Orszag (1991, § 3.5).

We can still compute cases where fully curved current profiles encounter large-
amplitude obstructions by instead adopting an iterative approach. One then evaluates
an error to the boundary condition (2.2c) in real space after having computed
û(ζ̂b)=F−1

{u(ζ̂b)} at all points (x, y). This error is then Fourier transformed and fed
back into the amplitudes as an augmentation of ε; εnew = εold + error. Convergence
properties are usually good, presumably because ε = w(δ) ∼ ikxU(δ) dominates over
uh(δ) ∗ ikηb in the cases tested herein.

The products in (5.4) constitute convolutions in Fourier space. Going back-and-forth
between physical and Fourier space circumvents computing the multi-dimensional
mode interactions which appear within the convolution. If instead individual mode
interactions are considered, the solution takes the form

ûn =F−1
k1
F−1

k2
. . .F−1

kn
un, (5.7)

where un is a function of the interaction wave vector

κn =

n∑
m=1

kn, (5.8)

(replacing k in (5.5)–(5.6)) except for in εn where

εn =

[
iknx

U(n−1)

(n− 1)!

n∏
j=1

ηb(kj)+

n−1∑
m=1

1
m!
(mikn · u(m−1)

h,n−m −w(m)
n−m)

n∏
j=n−m+1

ηb(kj)

]
z=δ

. (5.9)

The lower-order velocity components um−n(z; κm−n) are in turn functions of εm−n
and so on. Higher harmonics are therefore present even when the bathymetry is
a sinusoidal shape provided its amplitude is finite. We will later demonstrate the
appearance of higher harmonics in a flow over a sinusoidal bed of finite amplitude
and the possibility of higher-order resonance.

Although the nonlinear lower boundary condition greatly extends the range of well
approximated flow scenarios, the solution will still be restricted to linear order
within the flow field and at the surface. However, there are two cases, q = 0
and two-dimensional flow with q = 1, where the undulated velocity field û is
inherently irrotational. Potential theory is permissible in these two cases which are
consequently the two scenarios where the most theoretical headway has been made.
Irrotationality will in the Rayleigh equation (3.5) manifest by its inhomogeneous
right-hand term, assumed small in linear theory, becoming identically zero so that
the Rayleigh equation reflects the Laplace equation of potential theory (see e.g.,
Akselsen & Ellingsen 2019). In the first case, when also the unperturbed current
is uniform and irrotational (q = 0), flow irrotationality is intuitive since inviscid
perturbations are incapable of generating new vorticity. The second case is when
the unperturbed current is linear and perturbations are everywhere aligned with the
current (two-dimensional flows with q = 1). This latter case becomes rotational,
however, once the flow has non-trivial spanwise dependence, in particular if the
bathymetry is three-dimensional or not parallel to the current because current vortex
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FIGURE 6. (Colour online) Surface elevation profile ζ̂s generated by a uniform current
flowing over a half-cylinder of radius 0.2 at z= 0. The Froude number is Fr= 0.5, as in
the example of figure 5. Black solid and dashed lines are taken from figure 3 in Forbes
& Schwartz (1982) where the solid line is the fully nonlinear solution computed with
a numerical method and the dashed lines correspond to their ‘linearised solution’ where
the free-surface boundary condition is linearised while the bottom condition is satisfied
exactly by virtue of the conformal mapping. Red dot-dashed and dotted lines are the
present model. Dotted line is with the linear lower boundary condition and dashed line is
with the extended boundary procedure of § 5.

lines are made to twist if they pass through an undulated velocity field (Ellingsen
2016). Except for in these special cases, the linearised internal flow puts a limit on
the steepness kηb0 of the bathymetry, meaning that perturbations should be shallow
(k � 1) when current profiles are curved. Surface boundary conditions are also
approximate to linear order so that perturbations in the region z= 1 ought to be made
small.

Perturbation strategies for resolving the weakly nonlinear dynamics in the entirety
of the flows are straightforward in principle (see, e.g., Akselsen & Ellingsen (2019)
for an example), but they quickly become unwieldy.

6. Results

First, figure 6 has been generated as a benchmark against the conformal mapping
result in figure 3 of Forbes & Schwartz’ (1982) paper. It shows the surface elevation
profile ζ̂s as a uniform current flows over a half-cylinder of radius 0.2 – the example
used for illustration in figure 5. A qualitative comparison with Forbes & Schwartz
(1982) is straightforward; amplitudes and wavelengths closely resemble those of
Forbes & Schwartz’ ‘linearised solution’ – that is, linearised within the framework of
a conformal mapping. In comparison, a fully linear perturbation solution in Euclidean
space (N = 1) is far too low in amplitude (shown as a dotted line). The Stokes
wave shape that Forbes & Schwartz obtained in their fully nonlinear solution (with
increased amplitudes, sharper peaks and flatter troughs) is not captured as this is a
phenomenon related to surface nonlinearity, disregarded in the present model.
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FIGURE 7. Surface undulations over a sinusoidal bed; η̂b = ηb0 cos(k0x). Three current
profiles are shown – solid, q = 0; dashed, q = 1/2; dash-dotted, q = 1. δ = 0.125 and
ηb0 = 0.10.

6.1. Flow over sinusoidally corrugated beds
Infinite, cosinusoidal bathymetries are considered in the next part of this section. A
sinusoidal bathymetry has the spectrum ηb(k) = 1

2(2π)2[ηb0δ̃(k − k0) + η
∗

b0δ̃(k + k0)].
An asterisk represents the complex conjugate and δ̃ is here the Dirac delta function.
The bottom perturbation amplitude is ηb0.

Figure 7 shows surface undulations over a sinusoidal bed η̂b = ηb0 cos x. Three
current profiles, uniform, linear and intermediate, are displayed in subcritical and
supercritical flow regimes. Mean Froude number Frm = Fr(1− δq+1)/[(1− δ)(1+ q)]
(based on the mean current velocity) has been chosen as the flow intensity parameter
for better scaling of the amplitudes. (One of the main characteristics governing
undulation magnitude is the state’s proximity to a resonant state Fr≈Frcrit.) In regard
to figure 7, we make some general observations by varying the parameters Fr, q
and k.

(i) The undulations of the surface are in phase with those of the bed if the flow is
supercritical and in anti-phase if the flow is subcritical. This has long since been
established for uniform flows (e.g., Lamb 1932, p. 409). The same is true also of
higher-order harmonics, although this together with the sign of the correctional
amplitude εn from (5.9) will determine whether the higher-order harmonic is in
phase or anti-phase with the bed and thus whether maxima or minima align with
the peaks and troughs of the principal harmonic.
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(ii) Shallower flows (longer wavelength relative to depth) usually translates into
higher amplitudes (relative to depth), but the degree to which this is notable
or not depends on the Froude number. Exceptions will arise in the vicinity of
resonant states.

(iii) The surface shape in subcritical flows depends on the flow state relative to
the resonant harmonics; in figure 7 it is seen that the nonlinear effect is to
widen peaks and sharpen troughs when k0 = 0.1 and 1.0, yet the opposite
effect dominates for q= 1 when k0 = π. Supercritical harmonics will eventually
be encountered as the active wavenumber (5.8) grows higher with increasing
perturbation order, even if low-order modes are subcritical. (The most common
feature in subcritical flow seems to be a widening of the peaks and sharpening
of the troughs, which was the observation reported by Mizumura (1995) for
uniform currents with weakly nonlinear boundaries.)

(iv) Conversely, all higher harmonics are of a supercritical nature when the principal
harmonic is supercritical, and so no critical (resonant) states can then be
encountered by the higher harmonics. Still, the influence of higher-order
harmonics will depend on the sign of the correctional amplitudes εn which
in turn is observed to be strongly wavenumber dependent; supercritical profiles
with k0 = 1.0 are in figure 7 very slightly sharpened at the peaks (too little
to be clearly visible) while the opposite effect is evident for k0 = 0.1. Note
therefore that the effect reported by Mizumura (1995) for supercritical flows
based on numerical and experimental observations (a sharpening of the peaks
and widening of the troughs in resemblance to a Stokes wave) is here observed
only intermittently. This incongruence was already pointed out in the benchmark
test of figure 6 and is not surprising. The sharpening of crests and widening
of troughs is a hallmark of Stokes waves, an effect of nonlinear orders of the
free-surface steepness. We cannot capture this phenomenon, however, having
linearised the water surface to limit the scope of the present work as discussed
in out introduction.

Consider next the possible resonance of higher harmonics, in the sense of
approaching a critical Froude number as described in § 3.3. Figure 8 illustrates
this in terms of the harmonic amplitudes ηs,κ ; κ ∈ {k, 2k, 3k}. These are net harmonic
amplitudes from which the surface undulation is composed; η̂s =

∑
∞

j=1ηs,jk cos( jkx).
Each term of the perturbation series (5.1) brings with it a set of harmonics up to and
including the order n of that term. Amplitudes ηs,κ are computed by the summation
of these contributions, respective of each harmonic. Figure 8 also reveals that all
harmonics become singular at the same critical states, not just the resonant one
(e.g., the one satisfying (3.14)), although the resonant harmonic dominates in the
neighbourhood of the critical state. The reason for this is that the harmonics are
coupled at the lower boundary in terms of the in εn coefficients, equation (5.9). Thus,
εn becomes large when one of the lower-order harmonics is close to resonance.

Now, say, for example, that the flow rate over a long sinusoidal bed of finite
amplitude is gradually increased. If the current profile were to obey a fixed power
law, then a number of distinct states of resonance, respective to each harmonic, would
be seen at the surface (see figure 8(b) and figure 12 below).

More generally, Sammarco et al. (1994) showed that, just as finite bathymetry
amplitudes can cause higher-order resonance at the surface, so can finite surface
amplitudes generate higher-order resonance at the bed. Consequently, wavelength
ratios . . . , 1

3 ,
1
2 , 1, 2, 3, . . . between surface and bed may be resonant when both are

of finite amplitude.

D
ow

nl
oa

de
d 

fr
om

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e.
 S

IN
TE

F,
 o

n 
19

 S
ep

 2
01

9 
at

 0
6:

41
:2

0,
 s

ub
je

ct
 to

 th
e 

Ca
m

br
id

ge
 C

or
e 

te
rm

s 
of

 u
se

, a
va

ila
bl

e 
at

 h
tt

ps
://

w
w

w
.c

am
br

id
ge

.o
rg

/c
or

e/
te

rm
s.

 h
tt

ps
://

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
9.

65
7

https://www.cambridge.org/core
https://www.cambridge.org/core/terms
https://doi.org/10.1017/jfm.2019.657


756 A. H. Akselsen and S. Å. Ellingsen

0 0.1 0.2 0.3 0.4 0.5
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0.6 0.7 0.8 0.9 1.0

1.0
(a) Fr = 0.9

0.8
0.6
0.4
0.2

0
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(b) q = 1/7

0.8
0.6
0.4
0.2

0
-0.2
-0.4
-0.6
-0.8
-1.0
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˚ = 2k0
˚ = 3k0

FIGURE 8. The amplitudes of the first, second and third harmonics ηs,κ of the surface
modulation, displayed as a function of q and Fr. δ = 0.125, ηb = 0.1, k0 = 1.

z

x
y

FIGURE 9. (Colour online) Streamlines (blue) from a current flowing obliquely over
a sinusoidal bed (yellow/green surface). Free surface shown in transparent blue. The
sinusoidal bed pattern is rotated 45◦ relative to the direction of the current. The viewpoint
is such that the current is directed straight ahead (‘into the paper’). k0 = (π, π), δ = 0.1,
ηb0 = 0.1, Fr= 0.5, q= 1/7.

Next to be considered are currents obliquely incident on a sinusoidal bed. Figure 9
shows such a bed at 45◦ relative to the current. As is known from various earlier
works in the mathematically analogous case of surface waves (e.g., Ellingsen 2016),
the oblique interaction between linear waves and shear causes stream and vortex lines
to twist, as is clearly evident from the image. This effect disappears only if the current
is shear free, i.e., uniform (q = 0). Another interesting phenomenon in an obliquely
directed sinusoidal pattern is the streamline migration effect, made clearly visible in
figure 10. The starting points of our streamlines are placed along a vertical line with
equal spacing throughout the water column, the deepest of which sitting right on
the bed trough itself and the others extending upwards to z = 0.35 with increments
of 0.025. Streamlines originating from deep within a trough are seen to drift along
it, whereas streamlines originating from higher up in the flow field are increasingly
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x

y
z

FIGURE 10. (Colour online) Streamlines (blue) from a current flowing obliquely over a
sinusoidal bed (yellow/green surface). The sinusoidal bed pattern is rotated 45◦ relative
to the direction of the current. The shown streamlines originate at (from rightmost to
leftmost) z= 0, .025, .05, . . . . k0 = (1, 1), δ = 0.1, ηb0 = 0.1, Fr= 0.5, q= 1.

N = 1

(a) (b)

N = 2

N = 3

N = 6

N = 1

N = 2

N = 3

N = 6

q = 1/7, k0 = 0.1, ∂ = 0.25, ˙b0 = 0.25.
Aspect ratio : 20 :1

q = 1, k0 = π, ∂ = 0.5, ˙b0 = 0.15.
Aspect ratio : 1:1

FIGURE 11. (Colour online) Illustration of nonlinear bed solution of § 5 for series
truncated at N = 1, 2 and 6, depicted as flow field plots showing surface, bed, dynamic
pressure field and contours of the stream function (3.9). Fr= 0.5.

aligned with the current. The lowest points on the bed are at z = δ − ηb0, which is
zero in this case. At z= 0, where the unperturbed current is stagnant, the streamline
remains in the trough indefinitely. (This will not be the case if the trough remains
above the current stagnation depth z= 0.) The phenomenon is most clearly visible in
linear currents (q= 1), which has been applied here.

Next, some illustrative examples of accuracy as a function of the truncation order N
of the series (5.1) of the lower boundary condition are presented. Figure 11 shows two
examples of subcritical flow over a large-amplitude sinusoidal bed. Streamlines are
typically flatter in subcritical flows compared to supercritical flows since the surface
undulations are in anti-phase to those of the bed. Higher-order harmonics are therefore
more visible in subcritical flows. Cases chosen for figure 11 are challenging in the
sense that surface amplitudes are large and series convergence slow. A q= 1/7-shear
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FIGURE 12. (Colour online) High-order flow field plot showing surface, bed, dynamic
pressure field and contours of the stream function (3.9). δ = 0.25, ηb0 = 0.20, Fr = 0.5,
k0 = 1.0. Aspect ratio: π : 1. For these parameters, Frcrit(5k0) ≈ 0.49965. Consequently,
a perturbation of one-fifth the wavelength of the bed is clearly discernible in solutions
truncated at N > 5.

profile in a shallow-water stream is presented in figure 11(a) and a linear shear over
an intermediate wavelength bed in figure 11(b). Solutions of the internal flow are in
these cases accurate since the perturbation steepness is small in the first case and the
vorticity uniform in the latter, as pointed out in § 5. The surface elevation, which is
similar in the linear solution N = 1 of the two cases, evolves in opposite ways with
increasing truncation orders; a widening of the peaks and narrowing of the troughs
is observed in figure 11(a), while the trough flattens as the peaks become sharper in
figure 11(b).

As discussed in relation to figure 8, resonance with higher-order harmonics can
be encountered in flows where the linear harmonic is subcritical since the critical
Froude number Frcrit is a monotonically decreasing function of the ever-increasing
active wavenumber (5.8), see figure 2. Figure 12 exemplifies this, showing a third
case where a resonance effect in the fifth-order harmonic is distinct. This can be
anticipated because Frcrit(5k0) ≈ 0.49965 with the chosen parameters, close to the
actual Froude number Fr= 5.0. The proximity to a critical Froude number manifests
in the appearance of a strong undulation with wavelength one fifth that of the bed.
These undulations become apparent only the computation includes fifth-order terms
and above (N > 5).

In figure 13 we show profiles generated by q> 1 currents for long and intermediate
wavelengths. This may for example be representative of a flow driven by surface
stresses such as the Ekman layer near wind-swept water surfaces (e.g., Abdullah
1949). Recirculation occurs near the topography troughs for the chosen parameters.
This phenomenon is related to the current vorticity and is not observed with
uniform currents. Recirculation becomes increasingly likely for higher values of q.
Linearisation errors in the intermediate wavelength range k0 = π are not really
negligible, but a case (figure 13b) has been included as indication of intermediate
wavelength behaviour. A three-dimensional generalisation of figure 13(a) is presented
in figure 14, showing streamline plots near the bed. A bulging bathymetry pattern
is here considered as a sinusoidal surface of equal amplitude and wavelength is
orthogonally superposed on the streamwise one. Recirculation now occurs in the
troughs of the bed, here in the region z<δ, with streamline orbits tilted about planes
of symmetry.

6.2. Flow over localised disturbances
We now consider a current which is perturbed as it flows over a localised bed defect.
Table 1 gives the functional representation of some two-dimensional obstruction
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q = 10, k0 = 1, ∂ = 0.8, ˙b0 = 0.1 and Fr = 0.4. Aspect ratio: 5 :1

q = 5, k0 = π, ∂ = 0.7, ˙b0 = 0.1 and Fr = 0.75. Aspect ratio: 1 :1

(a)

(b)

FIGURE 13. (Colour online) Near-exponential shear current over monochromatic
bathymetry. Weak recirculation is observed in the trough. For visibility, additional, more
closely spaced streamlines with volume flux between streamlines a factor 4 smaller are
computed in the region z < δ to increase the contour resolution locally and display the
recirculation happening here.

x

y

FIGURE 14. (Colour online) A three-dimensional generalisation of the case presented in
figure 13(a) showing the near-bed recirculating streamlines (blue). The bathymetry consists
of two superposed surfaces varying sinusoidally in the streamwise and spanwise direction,
respectively, both of amplitude 1

2ηb0 and wavenumber k0 = 1.

η̂b/ηb0 ηb/ηb0

Gaussian e−π2x2/(2b)2 (2b/
√

π)e−b2k2
x/π

2

Wedge (1− |x|/b)Θ(b− |x|) 2a[1− cos(bkx)]/k2
x

Ellipse
√

1− (x/b)2 Θ(b− |x|) πJ1(bkx)/kx

Rectangle Θ(b− |x|) 2 sin(bkx)/kx

Convolution shape (
√

π/2bs)e−π2x2/(2bs)
2 e−b2

s k2
x/π

2

TABLE 1. Functions for various bathymetry obstacle shapes in real and Fourier space.
Θ and Jν are the Heaviside and Bessel functions, respectively.

shapes in physical and Fourier space. An inherent assumption in our model
(particularly in the vertical Taylor expansion) is that the length-to-amplitude ratio
of undulations is small. In practice this places a limit on how steep and unsmooth
our obstructions can be. (See, e.g., Holliday (1977) and West (1981) for similar
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Gauss, bs = 0

Wedge, bs = 0.1b

Ellipse, bs = 0.1b

Rectangle, bs = 0.25b

(a)

(b)

(c)

(d)

FIGURE 15. (Colour online) Flow over narrow obstacles (see table 1), showing dynamic
pressure field and contours of the stream function (3.9). Aspect ratio, 1 : 1. Obstacle half-
width b= 0.5, δ = 0.1, ηb0 = 0.25, q= 1, Fr= 1.0.

discussions related to surface waves.) It can also ultimately limit the convergence
of the procedure presented in § 5 as each perturbation order introduces increasingly
smaller wavelengths. We therefore soften some of the sharper shapes by convoluting
them with a Gaussian profile of half-width bs, written in the bottom entry of table 1.
The amount of softening, if any, is given in the subfigure captions. The flow fields
around these are shown in figures 15 and 16 for the cases of narrow obstacles
within a linear shear current and of wide obstacles within a q = 1/7 current profile,
respectively. We have δ � ηb0 in the latter case which will cause the Taylor series
extension of the lower boundary condition to diverge; the alternative iterative approach
discussed in § 5 is then instead adopted. Radiation conditions are imposed through
the method of separation into a ‘far field’ and a ‘near field’, as described in § 4.
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Gauss, bs = 0

Wedge, bs = 0

Ellipse, bs = 0.05b

Rectangle, bs = 0.1b

(a)

(b)

(c)

(d)

FIGURE 16. (Colour online) Flow over wide obstacles (see table 1), showing dynamic
pressure field and contours of the stream function (3.9). Aspect ratio, 10 : 1. Obstacle half-
width b= 5.0, ηb0 = 0.25, q= 1/7, Fr= 0.6, δ = 0.001.

Wavelengths of the train generated behind the obstructions are much longer than the
obstructions themselves for the flow in figure 15. Conversely, in figure 16 they are
significantly shorter than the obstruction. The Gaussian shape is ‘sufficiently smooth’
to suppress the relatively shorter wave train in the latter (ηb(kx) decays rapidly) while
the same is not true of the other shapes which contain sharp edges and whose Fourier
series representations thus have finite-amplitude contributions of zero wavelength. The
rectangular, having also vertical sidewalls, shape is the most severe of the set and
requires more smoothing compared to the others. Anomalies are seen at the face of
the narrow rectangle in figure 15(d) where the smoothing is insufficient, although the
effect of these anomalies doesn’t penetrate far out into the flow.
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FIGURE 17. (Colour online) The first example of figure 15 when all boundaries are
fully linearised.

Comparing with results from fully linearised boundary conditions N= 1 (figure 17),
one sees that the extension of the lower boundary is necessary for obtaining acceptable
results in these cases as must indeed be expected. In terms of computation time,
computing the flow fields shown in figures 11–17 calculated to order, say, N = 20
takes only a few seconds on a standard laptop computer and is of little relevance
here.

Finally, three-dimensional examples similar to those just presented, are shown in
figure 18 in the form of streamline plots of the flow field and contour plots of the
surface elevation. The triangular wedge is here a cone, the ellipse an ellipsoid and the
rectangle shapes are boxes (cuboids). A field separation method is more involved in
three dimensions wherefore a finite value µ1= 0.01 of the artificial friction coefficient
is instead adopted. This force suppresses the wave train before re-entering through
the periodic boundaries. (Only part of the computation domain is shown.) The images
focus on the near field where the effect of the obstacle shape is most evident; in the
far field behind the obstacle the well known Kelvin wake pattern becomes visible,
possibly significantly affected by the non-trivial shear profile as shown theoretically
(e.g., Li, Smeltzer & Ellingsen 2019) and experimentally (Smeltzer, Æsøy & Ellingsen
2019). The far field is governed primarily by the dispersion relation and its structure
is relatively insensitive to the detailed obstacle shape. Transverse waves dominate in
the wake pattern since the Froude number based on the obstacle length is low. Again
one sees that the Gaussian shape is smooth enough to suppress the wave train and
make its amplitude invisible on the plotted scale while the tip of the similar cone
shape generates a ripple which diverges outwards.

Similar surface elevation plots are presented in figure 19 for supercritical flow
conditions, i.e., the flow is too fast (Fr too high) for transverse waves to exist,
leaving only diverging waves. Only the ellipsoid and box are shown. The current is
uniform in figure 19(a) and linear in figure 19(b). Parameters are chosen such that
the wake angles in the uniform and sheared current cases are similar (in general
they will differ when shear is present, see Li & Ellingsen (2016)) and more of the
wave pattern’s far field is shown than in figure 18. More surface profiles for uniform
currents are presented in Buttle et al. (2018).

7. Discussion
The assumption of stationary flow conditions in the presented theory excludes

a range of the transient nonlinear phenomena which have regularly featured in
theoretical and experimental studies during the last decades. It is prudent to take a
moment to consider what has been left out.

First let us mention the nonlinear features related to the free surface itself.
The theory of Stokes waves, susceptible to modulation instability (Benjamin–Feir
instability) (Zakharov & Ostrovsky 2009) is a classical example and its analogue
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Gauss, bs = 0

Cone, bs = 0

Ellipsoid, bs = 0.05

Box, bs = 0.1

0.95
0.96
0.97
0.98
0.99
1.00(a)

(b)

(c)

(d)

0.95
0.96
0.97
0.98
0.99
1.00
1.01

0.95
0.96
0.97
0.98
0.99
1.00

1.02
1.01

1.10

1.05

1.00

0.95

0.90

FIGURE 18. (Colour online) Three-dimensional equivalent of figure 16 (b = 5.0, ηb0 =

0.25, q= 1/7, Fr = 0.6, δ = 0.001) using an artificial friction coefficient µ1 = 0.01. Left:
streamline plots (blue lines) with bathymetry (yellow/green surface) generated numerically
from the velocity field û(x, y, z). Right: contour plot of surface elevation ζ̂s(x, y). Aspect
ratio (x, y, z): 10 , 10 : 1.

appears also in river flows. Transients are often a persistent feature of the flow when
sufficiently shallow relative to bathymetry obstructions (Dolcetti et al. 2016). To wit,
the free-surface modulation wave resonance known from oceanographics (Phillips
1960; Zakharov 1968) can exist also in shallow-water river systems. Particularly, with
the effect that strong boundary layer shears has on the dispersion relation, three-wave
resonance becomes possible (Craik 1968; Akselsen & Ellingsen 2019).

Another interesting nonlinear channel flow phenomenon not related to current shear
is the generation solitons that radiate upstream. These may be seen when the flow is
near-critical, shallow and asymptotically two-dimensional. The mechanism for their
shedding is the local growth in amplitude within the linear regime due to lack of
dispersion, followed by the subsequent ‘breaking free’ of the soliton as increasing
nonlinearities increase wave speed (Katsis & Akylas 1987; Wu 1987). Amplitudes
of emitted solitons are decreasing if the conditions are subcritical and constant if
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Fr = 2.5, q = 0, ∂ = 0.001

Fr = 4.0, q = 1, ∂ = 0.25

1.15

(a)

(b)

1.10
1.05
1.00
0.95
0.90
0.85

1.15
1.20

1.10
1.05
1.00
0.95
0.90

0.80
0.85

1.10

1.05

1.00

0.95

0.90

1.10
1.15

1.05
1.00
0.95
0.90
0.85

FIGURE 19. (Colour online) Surface elevation ζ̂s of supercritical flows. Left: ellipsoid.
Right: box. µ1 = 0.025, bs = 0.1, b= 5.0, ηb0 = 0.20.

supercritical and below a certain cut-off Froude number (Akylas 1984; Cole 1985;
Mei 1986; Gourlay 2001). Upstream propagating solitons will slowly disperse if
the flow is asymptotically three-dimensional (unrestricted by channel walls) (Katsis
& Akylas 1987). The phenomenon is inherently transient and nonlinear and, when
present, not captured in our stationary theory. Periodic boundary conditions can,
however, be utilised to represent a bounded channel provided the bathymetry is
symmetric about the x-axis.

Yet more resonances are possible when the current is strongly sheared. Critical
layers (forming at depths where current advection matches wave dispersion) have
the ability to transfer energy between the current and the resonating wave motion
(Benney 1961; Craik 1968; Drivas & Wunsch 2016). A three-dimensional wave field
scattering also occurs via interaction with critical layers (Zakharov & Shrira 1990).
Critical layers have been effectively excluded from the present study by considering
steady states and strictly positive current profiles only.

An instability which should be well known to all is the onset of vortex shedding
behind obstacles at sufficiently high Reynolds numbers. Less famous is perhaps the
longitudinal vortex instability, commonly known as Craik–Leibovich CL2 instability,
possible in sheared three-dimensional flows. These may grow exponentially through
three-dimensional perturbation of a two-dimensional shear current and do not require a
free surface, critical layers or inflection points to arise (Phillips & Shen 1996; Phillips
et al. 1996). Such vortex generation is a fundamental mechanism for flow evolution
towards three-dimensionality and increased chaos.

8. Summary

We have presented a perturbation solution for a free-surface shear flow following a
zq velocity profile flowing over an arbitrarily but moderately sloped bed. For various
positive values of q this analytical form can model bottom boundary layers, linearly
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sheared flows and near-surface shear layers. Radiation conditions are incorporated to
generate the appropriate asymptotic behaviour.

Bathymetries of finite amplitude are found to introduce higher-order harmonics into
the solution. For particular combinations of flow profile and bathymetry shapes these
may resonate with the surface wave modes, producing nonlinear contributions to the
downstream surface pattern of higher-order which may become dominant. Resonances
occurring in flows over a sinusoidal bed manifest, in two-dimensional flows, as endless
wave trains trailing an obstruction. The expressions for criticality have been derived
and a number of observations concerning the relationship between current vorticity,
flow criticality, solution nonlinearity and the shape of the surface have been made
related to the sinusoidal-bed configuration. Recirculation is observed to occur within
deep depressions in the bathymetry when shear is strong. Further, three-dimensional
bed–current vorticity interaction phenomena have been demonstrated, revealing for
the case of flow at oblique angles to a sinusoidal bed both helical curving and
spanwise migration of streamlines. Finally, examples of flows encountering localised
obstructions of various shapes were presented in both two and three dimensions.
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