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ABSTRACT 
 
We obtain a general solution for the initial value problems of water 
waves with a shear current of uniform vorticity beneath the surface in 
three dimensions. Linearized governing equations and boundary 
conditions including the effects of gravity, a distributed external 
pressure disturbance, and constant finite depth, are solved analytically. 
Results are obtained and corresponding analyses are presented for the 
special case of an initial pressure impulse condition. Agreement with 
previous results in the absence of shear current is demonstrated. The 
results show that a shear current has significant impact on the transient 
wave motions. The shear current moreover introduced asymmetry 
between upstream and downstream waves, resulting in asymmetric 
wave patterns.  
 
KEY WORDS:  Initial value problems; shear current; water waves; 
initial impulsive pressure; free surface elevation 
 
INTRODUCTION 
 
Surface waves in the presence of sub-surface shear currents is both 
physically fascinating and of great practical importance. Most work on 
this topic, both analytical and numerical, has been performed in two 
dimensions, where much progress has been made (e.g., Peregrine, 
1976; Teles da Silva & Peregrine, 1988). Of particular interest has been 
the simplest shear flow model, where vorticity is assumed to be 
spatially constant. In two dimensions this flow still permits the use of 
potential theory for linear waves, and the constant vorticity means that 
complications from critical layers are avoided (Booker & Bretherton, 
1967). The literature on this particular flow is extensive; see, e.g. 
Ellingsen & Brevik (2014) and references therein. In three dimensions, 
however, progress on the interaction of waves and shear flow is more 
recent. Ellingsen (2014b) considered ship waves in the presence of 
shear currents, and also the classical Cauchy-Poisson problem (2014a) 
with initially prescribed surface shape and velocity. 
 
Classically, two different types of initial value problems have been 
considered for surface waves. The Cauchy-Poisson variant is one, 
whereas an alternative is to consider waves generated by applying a 
localized pressure impulse when the water is initially at rest (Stoker, 
2011). When the pressure impulse is short (a Dirac delta function in 
time), the initial conditions may be reformulated in terms of an initial 
velocity distribution. A formalism in terms of a general transient 
external pressure is useful, however, in the study of ship waves, where 

a “ship” is typically modelled as a travelling pressure source depressing 
the surface (see Darmon et al. 2014; Ellingsen, 2014b; Raphaёl & 
Gennes 1996). The work presented herein is thus a step towards a more 
general consideration of non-stationary ship waves.  
 
The presence of a shear current can drastically affect wave motion, 
resulting in a significantly anisotropic dispersion relation. This results 
in a widening, narrowing or skewing of ship waves (Ellingsen 2014b), 
and ring waves from a localized source become elongated and, when 
shear is strong, cease being ring-shaped at all (Ellingsen 2014a). In the 
present paper, a general expression is first derived for initial conditions 
as well as a general, transient external pressure at the free surface. 
Secondly the related patterns with initial pressure impulse are obtained. 
For this particular case, a numerical study of patterns and how they are 
affected by finite depth, vorticity and surface current velocity is 
presented.  
 
FORMULATION AND SOLUTION OF THE PROBLEM 
 
Description of the Problem 
We consider the wave-current system depicted in Figure 1. It is 
assumed that the water is incompressible, and the water viscosity is 
negligible. Fluid motion here is rotational due to the shear current, and 
three dimensional, thus potential theory cannot be used (Ellingsen & 
Brevik, 2014). We consider water with constant depth h.  

 
Fig.1 Wave-current system in finite water depth and coordinate systems  

 
Governing equations and linearized boundary conditions 
The governing equation for the fluid field is the continuity equation and 
Euler equation, which may be expressed  
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in which operator ∇=
𝜕

𝜕𝑥
𝐢 +

𝜕

𝜕𝑦
𝐣 +

𝜕

𝜕𝑧
𝐤, v = v (x, y, z, t) = U(z)i + (ui + 

vj  + wk), is the fluid velocity, with the basic shear flow U(z) = Sz+U0, 

and the small velocity perturbations are u, v, w. The density of the fluid 

is 𝜌, p is the pressure, and g is the acceleration of gravity.  

 

In this specific problem, boundary conditions include the free surface 

and sea bottom conditions. For a detailed linearizing process of the 

boundary conditions, see Ellingsen (2014a). Here, the linearized 

kinematic and dynamic boundary conditions at the mean free surface 

are expressed as  

𝑤|𝑧=0 = (
𝜕𝜁

𝜕𝑡
+𝑈(𝑧)

𝜕𝜁

𝜕𝑥
)|
𝑧=0    

(𝑝 − 𝜌𝑔𝜁)|𝑧=0 = 𝑝𝑒𝑥𝑡 .             
}                  (3) 

Where ζ= ζ(x, y, t) is the surface elevation compared to the undisturbed 

surface, and 𝑝𝑒𝑥𝑡(𝑥, 𝑦, 𝑡) is the external pressure disturbance, which we 

assume known. We assume that the external pressure is zero for t<0 

and has arbitrary time dependence thereafter, but in such a way that its 

temporal Laplace transform exists. At the sea bottom, the boundary 

condition is  

𝑤|𝑧=−ℎ = 0                           (4) 

When viscosity is neglected, the flow is fully determined by Eqs. 1 - 4 

and initial conditions. 

 

Fourier Transformation 

We introduce Fourier transformations in the xy plane, defined as 
[𝑢(𝑥, 𝑦, 𝑧, 𝑡), 𝑣(𝑥, 𝑦, 𝑧, 𝑡), 𝑤(𝑥, 𝑦, 𝑧, 𝑡)] =                       

          ∬
𝑑2𝑘

(2𝜋)2
[𝑢̃(𝒌, 𝑧, 𝑡), 𝑣 ̃(𝒌, 𝑧, 𝑡), 𝑤̃(𝒌, 𝑧, 𝑡)]𝑒𝑖𝒌∙𝒓,

𝑝(𝑥, 𝑦, 𝑧, 𝑡) − 𝜌𝑔𝑧 = ∬
𝑑2𝑘

(2𝜋)2
𝑝(𝒌, 𝑧, 𝑡)𝑒𝑖𝒌∙𝒓,                 

𝜁(𝑥, 𝑦, 𝑡) = ∬
𝑑2𝑘

(2𝜋)2
ζ̃(𝒌, 𝑡)𝑒𝑖𝒌∙𝒓,                                       

𝑝𝑒𝑥𝑡(𝑥, 𝑦, 𝑡) = ∬
𝑑2𝑘

(2𝜋)
2 𝑝𝑒𝑥𝑡(𝒌, 𝑡)𝑒

𝑖𝒌∙𝒓,                            
}
 
 
 
 

 
 
 
 

                  (5) 

in which wave vector k = (𝑘𝑥,𝑘𝑦) = (kcosθ, ksinθ), and 𝒓 = 𝑥𝑖 + 𝑦𝑗. 

 

Linearize Eq. 1 and Eq. 2, and apply Fourier transformation to Eq. 1~4, 

then the continuity and Euler equations could be expressed as: 

𝑖𝑘𝑥𝑢̃ + 𝑖𝑘𝑦𝑣̃ + 𝑤̃
′ = 0, 𝑢̇̃ + 𝑖𝑘𝑥𝑈𝑢̃ + 𝑆𝑤̃ = −𝑖𝑘𝑥𝑝/𝜌,

𝑣̇̃ + 𝑖𝑘𝑥𝑈𝑣̃ = −𝑖𝑘𝑦𝑝/𝜌,    𝑤̇̃ + 𝑖𝑘𝑥𝑈𝑤̃ =  −𝑝′/𝜌             
}               (6) 

here, a dot represents derivation with respect to time, a prime with 

respect to z. 

  

General Solutions in Finite Water Depth 

Following the procedure of Ellingsen (2014a) by eliminating 𝑢̃, 𝑣̃, and 

𝑝, we obtain a Rayleigh equation for 𝑤̃ alone, 

(𝜕/𝜕𝑡 + 𝑖𝑘𝑥𝑈)(𝜕
2/𝜕𝑧2 − 𝑘2)𝑤̃ = 0 .                    (7) 

 

The general solution of 𝑤̃ has the expression: 

 𝑤̃ = 𝑘𝐴(𝒌, 𝑡) sinh𝑘(𝑧 + ℎ) + 𝑘𝐶(𝒌, 𝑡) cosh 𝑘(𝑧 + ℎ) +
𝑘3𝐷(𝒌)𝑒−𝑖𝑘𝑥𝑈𝑡

𝑘2+(𝑘𝑥𝑆𝑡)
2   

  (8)  

in which A (k, t), 𝐶(𝒌, 𝑡) and 𝐷(𝒌) are spatially constant. Applying the 

seabed boundary condition into Eq. 8 yields 𝐶(𝒌, 𝑡) = 𝐷(𝒌) = 0. 

Substituting 𝑤̃ back into the equations, we obtain 

𝑤̃ = 𝑘𝐴 sinh 𝑘(𝑧 + ℎ),                                                                             

𝑝/𝜌 = −(𝐴̇ + 𝑖𝑘𝑥𝑈𝐴)cosh𝑘(𝑧 + ℎ) + (𝑖𝑆𝑘𝑥𝐴/𝑘) sinh 𝑘(𝑧 + ℎ)

+const                                                                

}. 

                                  (9) 

Substituting Eq. 9 into the boundary conditions at the free surface 

yields  

𝑘𝐴(𝒌, 𝑡)sinh𝑘ℎ = 𝑖𝑘𝑥𝑈0ζ ̃ + ζ ̇̃                                                        

−(𝐴̇ + 𝑖𝑘𝑥𝑈0𝐴)cosh𝑘ℎ + (𝑖𝑆𝑘𝑥𝐴/𝑘) sinh 𝑘ℎ − 𝑔𝜁 = 𝑝𝑒𝑥𝑡/𝜌
},     (10) 

in which 𝑈0 is the current velocity at the still free surface, and we 

define 𝐴0 as 𝐴(𝒌, 0), and 𝜁 ̃0 as 𝜁(𝒌, 0).  
 

We apply a Laplace transform to Eq. 10 and eliminate A to get 

𝜁(̅𝒌, 𝑠) = 𝑓𝐼𝑒𝑥𝑡
̅̅ ̅̅ ̅(𝒌, 𝑠)/(𝑠2 + 2𝑖𝜔1𝑠 + 𝜔2

2) ,                   (11) 

where the Laplace transform is defined as 

𝑓(̅𝑠) = ∫ 𝑑𝑡 𝑓(𝑡)𝑒−𝑠𝑡
∞

0
,                (12) 

and we have defined the quantities 
𝜔1 = 𝑘𝑥𝑈0 − 𝑆𝑘𝑥 tanh 𝑘ℎ /(2𝑘),                                               

𝜔2
2 = (𝑘𝑥

2𝑆𝑈0/𝑘 + 𝑔𝑘)tanh 𝑘ℎ − (𝑘𝑥𝑈0)
2,                            

𝑓𝐼𝑒𝑥𝑡
̅̅ ̅̅ ̅(𝒌, 𝑠) = −(𝑘𝑝̅𝑒𝑥𝑡(𝒌, 𝑠) tanh𝑘ℎ)/𝜌 + 𝑘 sinh 𝑘ℎ 𝐴0

              +[𝑠 + 𝑖𝑘𝑥𝑈0 − (𝑖𝑆𝑘𝑥/𝑘)tanh 𝑘ℎ]𝜁 ̃0 }
 
 

 
 

.        (13) 

 

Hence the free surface elevation could be expressed as 

𝜁(𝑥, 𝑦, 𝑡) = ∬
𝑑2𝑘

(2𝜋)2
[ζ̃(𝒌, 𝑡)]𝑒𝑖𝒌∙𝒓                (14) 

Where ζ̃(𝒌, 𝑡) = ∫
𝑑𝑠

2𝜋𝑖
 𝑓𝐼𝑒𝑥𝑡
̅̅ ̅̅ ̅(𝒌, 𝑠)𝑒𝑠𝑡/(𝑠2 + 2𝑖𝜔1𝑠 + 𝜔2

2)
𝛤

, and the 

contour Γ runs from -i∞ to +i∞ to the right of all singularities 

 

After we get the expression of the surface elevation, we can obtain the 

vertical velocity distributions by eq. 9.  

 

Initial Value Conditions 

We shall consider the classical initial condition of an impulsive 

pressure applied to the surface when the water is initially at rest, which 

just remains for an infinitesimally short time at 𝑡 = 0, but imparts a 

finite momentum to the surface. Such a pulse is described by a Dirac 

delta function. In this paper, we focus on this case within the fully 

general framework developed above.  

 

Consider a time 𝑡 > 0. The time-dependent pressure disturbance has 

returned to zero, which means the first term of 𝑓𝐼𝑒𝑥𝑡
̅̅ ̅̅ ̅(𝒌, 𝑠) in Eq. 13 is 

zero. Now performing the inverse Laplace transform gives 

𝜁(𝑥, 𝑦, 𝑡) = ∬
𝑑2𝑘

(2𝜋)2
{[𝑘𝐴0 sinh 𝑘ℎ − 𝑖𝑆𝑘𝑥𝜁 ̃0 tanh 𝑘ℎ /(2𝑘)] 

            × 
sin√𝜔1

2+𝜔2
2𝑡

√𝜔1
2+𝜔2

2
+ 𝜁 ̃0cos√𝜔1

2 + 𝜔2
2𝑡}𝑒𝑖(𝒌∙𝒓−𝜔1𝑡)                     (15) 

 

Equation 15 implicates a pressure impulse problem as well as a 

Cauchy-Poisson problem. In the latter case, ζ(x,y,t) and ∂𝜁/ ∂𝑡 are 

given at t=0, and 𝑝𝑒𝑥𝑡(𝑥, 𝑦, 𝑡) = 0. With a slight change of formalism, 

Eq. 13 and Eq. 15 could be expressed as 

𝜁(𝑥, 𝑦, 𝑡) = ∬
𝑑2𝑘

(2𝜋)2
{(𝑖𝜔1𝜁 ̃0 + 𝜁 ̃0

̇ )
sin √𝜔1

2 + 𝜔2
2𝑡

√𝜔1
2 + 𝜔2

2
 

                              + 𝜁 ̃0cos√𝜔1
2 + 𝜔2

2𝑡}𝑒𝑖(𝒌∙𝒓−𝜔1𝑡)              (16) 

which is identical to Eq. 25 in Ellingsen (2014a) when using the 

conventions defined therein.  

 

For the second initial case, according to Eq. 16, 𝐴0 and 𝜁 ̃0 have yet to 

be determined. A Gaussian distribution is used to define the initial 

pressure impulse, which we express as 

𝑝𝐼(𝑟) = 𝐼𝛿(𝑡)𝑒
−(𝜋𝑟/𝑎)2,                               (17) 

wherein a is the width of the pulse, and 

𝑝𝐼 = 𝐼𝛿(𝑡)𝑎2𝑒−(𝑘𝑎/2𝜋)
2
/𝜋        

∫ 𝛿(𝑡)
+∞

−∞
𝑑𝑡 = ∫ 𝛿(𝑡)𝑑𝑡

0+

0−
= 1

} .                                    (18) 
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Next, we obtain the value of 𝐴0 and 𝜁 ̃0 by integrating Eq. 10 over t in 

the interval from 0− to 0+, whereby 

∫ 𝑑𝑡 𝑘𝐴sinh𝑘ℎ
0+

0−
= ∫ 𝑑𝑡 𝑖𝑘𝑥𝑈0ζ ̃

0+

0−
+ ∫ 𝑑𝑡

∂ζ ̃

𝜕𝑡

0+

0−
                          

∫ 𝑑𝑡 {−(𝐴̇ + 𝑖𝑘𝑥𝑈0𝐴)cosh𝑘ℎ + (𝑖𝑆𝑘𝑥𝐴/𝑘) sinh 𝑘ℎ − 𝑔𝜁}
0+

0−
  

                             = ∫ 𝑑𝑡 𝑝̃𝐼/𝜌
0+

0− }
 
 

 
 

.    (19) 

 

By assumption all perturbation quantities are zero when 𝑡 < 0, and we 

may assume A and ζ to take finite values at 𝑡 = 0+. Hence, from Eq. 

19, we obtain  

𝜁 ̃0 = 0,      𝐴0 = −
𝑎2𝐼𝑒−(𝑘𝑎/2𝜋)

2

𝜋𝜌 cosh 𝑘ℎ
.                                    (20) 

 

Therefore, the surface elevation could be expressed as 

𝜁(𝑥, 𝑦, 𝑡) = ∬
𝑑2𝑘

(2𝜋)2
{−

𝑘𝑎2𝐼𝑒−(𝑘𝑎/2𝜋)
2
tanh 𝑘ℎ

𝜌𝜋

sin√𝜔1
2+𝜔2

2𝑡

√𝜔1
2+𝜔2

2
𝑒𝑖(𝒌∙𝒓−𝜔1𝑡)}. (21) 

 

In order to better evaluate effects of velocity, vorticity and water depth, 

we introduce the non-dimensional quantities using similar rescaling 

rules as that of Ellingsen (2014a) , defined in table. 1. 𝐹𝑟𝑈0 and 𝐹𝑟𝑠 are 

“surface current Froude number” and “shear Froude number”, 

respectively, based on the current velocity at the surface 𝑈0 and 

velocity bS. In terms of non-dimensional quantities, the surface 

elevation could be expressed as  

𝜁

𝑎
= ∫ d𝛾 ∫

−𝐾2𝑃𝐼𝑒
−(

𝐾
2𝜋
)
2

tanh𝐾𝐻 sin𝑇√(𝐹𝑟𝑠 cos 𝛾 tanh𝐾𝐻)
2+𝐾 tanh𝐾𝐻

4𝜌𝜋3√(𝐹𝑟𝑠 cos 𝛾 tanh𝐾𝐻)
2+𝐾 tanh𝐾𝐻

∞

0

2𝜋

0
       

𝑒𝑖(𝑲∙𝑹−(𝐾𝐹𝑟𝑈0 cos 𝛾−𝐹𝑟𝑠 cos 𝛾 tanh𝐾𝐻)𝑇)d𝐾    .             (22) 

 

Table 1. Physical V.S. dimensionless quantities 

Physical quantities Non-dimensional quantities 

𝜁 𝜁/𝑎 

h H=h/a 

r  ( r ) R=r/a  ( R=r/a ) 

(x,y) (X,Y) = (x/a,y/a) 

t 𝑇 = 𝑡/√𝑎/𝑔 

𝜔1,2 Ω1,2 = 𝜔1,2√𝑎/𝑔 
k  ( k ) K=ak  ( K=ak ) 

𝑈0 𝐹𝑟𝑈0 = 𝑈0/√𝑎𝑔 
S 𝐹𝑟𝑠 = 𝑆√𝑎/𝑔 
I PI=𝐼/(𝜌𝑎√𝑎𝑔) 

 

 

LIMITING CASES AND NUMERICAL EXAMPLES 
 

Dispersion Relation 

From eq. 10-13, we can obtain the dispersion relation which could be 

expressed as 

[𝜔−𝑘𝑥𝑈0 +
𝑆𝑘𝑥 tanh 𝑘ℎ

2𝑘
]
2

= 

                    𝑔𝑘 tanh 𝑘ℎ + (𝑆𝑘𝑥 tanh 𝑘ℎ)
2/(4𝑘2) (23) 

in which 𝜔 is the absolute frequency. This relation reduces to the well 

known case (e.g., Mei (1979)) when the current is uniform (i.e. S=0). 

When there is no current at all, eq. 23 is obviously the classical 

dispersion relation 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ.  

 

The intrinsic frequency 𝜎 could be defined in the expression as 

𝜎 = 𝜔 − 𝑘𝑥𝑈0 = ±√𝑔𝑘 tanh 𝑘ℎ + (
𝑆𝑘𝑥 tanh𝑘ℎ

2𝑘
)
2
−
𝑆𝑘𝑥 tanh𝑘ℎ

2𝑘
       (24) 

In this perspective, we can define the group velocity relative to the 

surface velocity  

𝑪𝑔 = ∇𝒌𝜎 =
𝜕𝜎

𝜕𝑘𝑥
𝐢 +

𝜕𝜎

𝜕𝑘𝑦
𝐣 =

𝜕𝜎

𝜕𝑘
𝐞𝑘 + 

1

𝑘

𝜕𝜎

𝜕𝜃
𝐞𝜃 ,              (25) 

where 𝐞𝑘 and 𝐞𝜃 are unit vectors in polar coordinate Fourier space. 

  

Vertical Velocity Distributions 

From eq. 20 we see that the initial pressure impulse at time 𝑡 = 0+ 

directly results in an initial surface velocity distribution given by 𝐴0, 

subsequently developing into an outward propagating surface wave. 

 

Fig.1 depicts the vertical velocity distributions for given initial pressure 

impulse. It may be seen in Fig. 1 that, at 𝑡 = 0+, the main vertical 

velocity disturbance caused is focused in the region 𝑟 ≤ 𝑎. Outside this 

region, the vertical velocity is relatively small. It is obvious that the 

initial velocity will predominately have the opposite sign to the initial 

pressure impulse.  

 
Figure 1. Non-dimensional vertical velocity distributions 𝑊 = 𝑤/√𝑔𝑎 

at t=0 as H=20, PI= 2e-4. 

 

The Effect of Water Depth 

 

Solutions in infinite water depth 

By taking the deep water limit of solutions in finite water depth, we can 

obtain the specific solutions for infinite water depth, which can be 

expressed as 

𝑤̃ = 𝑘𝐴𝑒𝑘𝑧                                                                                          
𝑝/𝜌 = −[𝐴̇ + 𝑖𝑘𝑥𝐴(𝑈 + 𝑆/𝑘)]𝑒

𝑘𝑧 + Const                               

ζ̃(𝒌, 𝑡) = ∫
𝑑𝑠

2𝜋𝑖

−𝑘𝑝̅𝑒𝑥𝑡(𝒌,𝑠)/𝜌+𝑘𝐴(𝒌,0)+[𝑠+𝑖𝑘𝑥(𝑈0−𝑆/𝑘)]𝜁̃(𝒌,0)

(𝑠2+2𝑖𝜔1𝑠+𝜔2
2)

 𝑒𝑠𝑡
𝛤

}      (26) 

Here,  𝜔1 = 𝑘𝑥𝑈0 − 𝑆𝑘𝑥/(2𝑘), and 𝜔2
2 = 𝑔𝑘 + 𝑘𝑥

2𝑆𝑈0/𝑘 − (𝑘𝑥𝑈0)
2.  

 

For the corresponding Cauchy-Poisson initial value problem, we obtain 

the same expression of surface elevation as given in eq. 16, with 𝜔1 

and 𝜔2 defined as in eq. 26.   

 

For the second initial value problem, we can get the solution of surface 

elevation expressed as  

𝜁(𝑋,𝑌,𝑇)

𝑎
= −PI∬

𝑑2𝐾

(2𝜋)2
𝐾
sin√Ω1

2+Ω2
2𝑇

√Ω1
2+Ω2

2
𝑒𝑖(𝑲∙𝑹−Ω1𝑇)−(𝐾/2𝜋)

2
             (27) 
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In which  Ω1 and Ω1are defined as before. The exponential ensures that 

the main contribution comes from 𝐾 ≲ 2𝜋. 

 

Eq. 27 corresponds to Stoker (2011, p.159) when no current is included 

and assuming the same initial pressure distribution.  

 

The dispersion relation in infinite water depth could be expressed as 

𝜎 = 𝜔 − 𝑘𝑥𝑈0 = ±√𝑔𝑘 + (
𝑆

2
cos 𝜃)

2
−
𝑆

2
cos 𝜃.                              (28) 

            

According the eq. 25, we can get the relative group velocity along the 

direction of phase propagation expressed as 

𝐶𝑔 =
1

2
√
𝑔

𝑘

1

√1+(𝑆 cos 𝜃)2/(4k)
<

1

2
√
𝑔

𝑘
.                             (29) 

 

And the relative phase velocity 𝑐 could be expressed as 

𝑐 = 𝜎/𝑘= √
𝑔

𝑘
√1 +

1

4𝑔𝑘
𝑆2 cos2 𝜃 −

𝑆

2𝑘
cos 𝜃 ≶ √

𝑔

𝑘
                    (30) 

 

As discussed by Ellingsen (2014a) we may disregard the ± in Eq. 28 

when considering the wave velocities, since these correspond to 

(positive) velocities in opposite directions, and there is a unique 

positive phase and group velocity in each direction 𝜃. Eqs. 29 and 30 

reveal that the relative phase velocity is greater than the group velocity 

in every wave propagating direction, as one expects for gravity waves. 

Note moreover how the presence of the shear flow can increase or 

decrease the phase velocity, but only decrease the group velocity. 

  
(a) Deep waters (b) Shallow waters 

  Figure 2. Waves of deep and shallow waters at different times T. In all panels Frs=1, 𝐹𝑟𝑈0=0, and PI=2e-4. Left 8 panels : H=20, right 8 panels: 

H=0.05. Areas in this and all below figures where 𝜁 > 0.2 𝜁max(𝑋, 𝑌, 𝑇 = 0.1) are white, 𝜁 < −0.2𝜁max(𝑋, 𝑌, 𝑇 = 0.1) are black, with linear colour 

gradient for amplitudes in between.  

 

Limit of shallow water 

We consider the shallow water situation, when ℎ ≪ 1. Then, 

tanh 𝑘ℎ ~𝑘ℎ. From Eq. 23~Eq. 25 we obtain 

𝐶𝑔 ≈ c ≈ √𝑔ℎ + (
𝑆ℎ

2
cos 𝜃)

2
−
𝑆ℎ

2
cos 𝜃 .                     (31) 

 

Eq.  31 shows that the relative phase and group velocities coincide 

when the water depth is small compared to a wavelength, and there is 

no dispersion despite the sub-surface shear current. However, velocity 

varies with the direction of wave propagation due to the existence of 

shear current. The lack of dispersion means that wave patterns retain 

their ring shape as they propagate. 
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(a) Zero shear current, Frs=0 

 
(b) Moderate shear current, Frs=1 

 
(c)   Strong shear current, Frs=5 

Figure 3. Waves with different shear Froude numbers at different times T. In all panels: 𝐹𝑟𝑈0=0, PI=2e-4 and H=20. Colour scaling is as in figure 2. 
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Fig. 2 shows wave patterns at deep (H=20) and shallow (H=0.05) 

waters at different times with moderate shear current. In the figure, a 

moderate shear Frs=1 is considered and the surface current velocity 

(𝐹𝑟𝑈0=0) is ignored. It is obvious from Fig.2 that the shear current has 

different influence upon waves in deep and shallow water. Effects of 

the shear current are more prominent in deep waters. This accords to 

eq. 29, 30 and eq. 31. The effects of shear in shallow waters are 

diminished, and the lack of dispersion is apparent from the stability of 

the ring shapes as they propagate. These observations concur with those 

of Ellingsen (2014a). 

 

The previous section has shown that the vorticity has different degree 

of influence in deep and shallow waters. Consider now strong, 

moderate and zero shear in deep waters, without the surface current 

velocity in order to simplify the problem. The situation is shown in Fig. 

3. In Fig. 3, we can observe that a clear asymmetry is created by the 

shear current upon the waves from the symmetrical initial pressure 

disturbance. When the shear is strong enough, the waves fronts are no 

longer ring shaped, as can be seen in Fig. 3-c.  

 

THE DISPERSION RELATION AND ITS SOLUTIONS 
 

In the following we discuss the dispersion relation further. According 

to eq. 23, 25, 28~31, it is obvious that the surface current velocity 

contributes only to the absolute phase/group velocity. Consider now a 

plane wave of a certain frequency 𝜔 propagating in a given direction 𝜃, 

having dispersion relation 

𝜔 = const = 𝑘𝑈0 cos 𝜃 −
𝑆 cos 𝜃

2
± √𝑔𝑘 +

(𝑆 cos 𝜃)2

4
.              (32) 

 

Generally, a propagating plane wave has the form 𝑒𝑖(𝒌∙𝒓−𝜔𝑡). When we 

introduce a Galilean transformation  𝒓′ = 𝒓 − 𝑼𝟎𝑡, a progressive wave 

in the rest frame may be written as  

 

𝑒𝑖(𝒌∙𝒓−𝜔𝑡) = 𝑒𝑖[𝒌∙(𝒓
′+𝑼𝟎𝑡)−𝜔𝑡] = 𝑒𝑖[𝒌∙𝒓

′−(𝜔−𝒌∙𝑼𝟎)𝑡] .               (33) 

 

Thus in the moving frame the effective frequency is  

𝜔𝑒 = 𝜔 − 𝑘𝑈0 cos 𝜃                           (34) 

in which 𝜃 denotes the angle between wave number vector k and the x 

axis. The result of eq. 34 is the well-known Doppler effect whereby the 

frequency of a wave depends upon the frame of reference: 𝜔𝑒 ≶  𝜔 if 

𝑈0 cos 𝜃 ≷ 0 .  

 

The dispersion relation eq. 32 could be solved graphically from the 

intersection of the straight line 𝑦 = 𝜔 − 𝑘𝑈0 cos 𝜃 and the curves 𝑦 =
±𝜎(𝑘) with 𝜎(𝑘) from Eq. 28. This is shown in Fig. 4. Fig. 4 is quite 

similar to figure of Mei (1979, p99) when S=0.  

 

The number of solutions to the dispersion relation depends on the sign 

of 𝑈0. For cos 𝜃 > 0 (waves propagating towards the right, i.e., positive 

values of x) , and 𝑈0 > 0 there are two possible waves of frequency 𝜔 

whose wavelengths are shorter and longer than that of zero surface 

velocity, respectively, and of which the slower one (short wavelength) 

travels more slowly than the water surface in the absolute system. 

When 𝑈0 < 0 there can be 0, 1 or 2 solutions, depending on the 

magnitude of 𝑈0 cos 𝜃.  
 

For cos 𝜃 < 0 (waves propagating towards the left), we must 

distinguish between two different situations, namely whether 𝜔 is 

greater or smaller than S|cos 𝜃|. When there is no surface current, 

S|cos 𝜃| is the smallest possible wave frequency, whereas introduction 

of a surface current allows waves of arbitrarily small frequency to fulfil 

the dispersion relation, as shown in figure 4c.  

 

Whenever 𝜔 > 𝑆 |cos 𝜃|, the situation for left-propagating waves 

resembles that for right-directed propagation. A single solution exists 

when 𝑈0 = 0, and when 𝑈0 < 0, two wave numbers satisfy the 

dispersion relation, one of whose wavelengths is shorter than it would 

be in absence of surface velocity, the other longer. When 𝑈0 > 0 there 

can be 0, 1 or 2 solutions, depending on the magnitude of 𝑈0 cos 𝜃. 
 

 
            (a) Right-propagating (cos 𝜃 > 0)

 
 

             (b) Left-propagating (cos 𝜃 < 0), 𝜔 > S |cos 𝜃| 

 
             (C) Left- propagating (cos 𝜃 < 0), 𝜔 < S |cos 𝜃| 
Figure 4. Graphical solution of Eq. 34.  

 

CONCLUSIONS 
 

In this paper we obtained a general solution of the problem of surface 

waves in the presence of shear current beneath the water surface, 

including both initial conditions and time-dependent external pressure. 

Solutions are obtained in both finite and infinite water depth. As a 

special case, corresponding analyses are carried out with a distributed 

external impulsive pressure at t=0.  
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By numerical simulations we showed how the impulsive pressure, 

which gives rise to an initial velocity distribution in the fluid, creates a 

“ring wave” surface elevation pattern at subsequent times.  

 

An obvious effect of shear current of uniform vorticity is to create 

asymmetry of the wave motion between upstream and downstream 

directions. Moreover, we confirmed a previous observation that 

vorticity of the current has more prominent influence in deep waters.  

 

By analyzing the dispersion relation for a steady phase of given 

frequency in deep waters, we showed that different combinations of the 

shear vorticity and surface current velocity will result in dramatic 

discrepancies in wave motions. We categorized three different 

situations depending on whether waves are travelling towards the right 

(positive x) or left (negative x), and in the latter case, on the relative 

values of  𝜔 and 𝑆 |cos 𝜃|, 𝜃 being the angle between wave vector and x 

axis.  

  

REFEREMCES 
 

Booker, J. R. & Bretherton, F. P. (1967), “The critical layer for internal 

gravity waves in a shear flow” Journal of Fluid Mechanics, vol. 27, 

pp. 513-539. 

Darmon, A., Benzaquen, M, & E. Raphaël (2014), “Kelvin wake 

pattern at large Froude numbers”, Journal of Fluid Mechanics, vol. 

738, R3. 

Ellingsen, S. Å. & Brevik, I. (2014), “How linear surface waves are 

affected by a current with constant vorticity”, European   Journal 

of Physics, vol. 35, 025005. 

Ellingsen, S. Å. (2014a), “Initial Surface disturbance on a shear current: 

the Cauchy-Poisson problem with a twist”, Physics of Fluids, vol. 

26, 082104. 

Ellingsen, S. Å. (2014b), “Ship waves in the presence of uniform 

vorticity”, Journal of Fluid Mechanics, vol. 72, R2.  

Mei, C. C. (1979). The applied dynamics of ocean surface waves, 

1989.Singapore, World Scientific. 

Peregrine, D. H. (1976) “Interaction of water waves and currents” 

Advances in Applied Mechanics, vol 16, pp. 9-117. 

Raphaёl, E & Gennes, D. (1996), “Capillary gravity waves caused by a 

moving disturbance-wave resistance”, Physical Review, vol.53, 

no.4, pp. 3448-3455. 

Stoker, James Johnston (2011), Water waves: The mathematical theory 

with applications. Vol. 36. John Wiley & Sons. 

Teles da Silva, A. F. & Peregrine, D. H. (1988), “Steep, steady surface 

waves on water of finite depth with constant vorticity”, Journal of 

Fluid Mechanics, vol. 195, pp. 281-302. 

 

549




